ﻻ يوجد ملخص باللغة العربية
Across diverse biological systems -- ranging from neural networks to intracellular signaling and genetic regulatory networks -- the information about changes in the environment is frequently encoded in the full temporal dynamics of the network nodes. A pressing data-analysis challenge has thus been to efficiently estimate the amount of information that these dynamics convey from experimental data. Here we develop and evaluate decoding-based estimation methods to lower bound the mutual information about a finite set of inputs, encoded in single-cell high-dimensional time series data. For biological reaction networks governed by the chemical Master equation, we derive model-based information approximations and analytical upper bounds, against which we benchmark our proposed model-free decoding estimators. In contrast to the frequently-used k-nearest-neighbor estimator, decoding-based estimators robustly extract a large fraction of the available information from high-dimensional trajectories with a realistic number of data samples. We apply these estimators to previously published data on Erk and Ca signaling in mammalian cells and to yeast stress-response, and find that substantial amount of information about environmental state can be encoded by non-trivial response statistics even in stationary signals. We argue that these single-cell, decoding-based information estimates, rather than the commonly-used tests for significant differences between selected population response statistics, provide a proper and unbiased measure for the performance of biological signaling networks.
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simul
The identification of time-varying textit{in situ} signals is crucial for characterizing the dynamics of quantum processes occurring in highly isolated environments. Under certain circumstances, they can be identified from time-resolved measurements
Quantifying the attack ratio of disease is key to epidemiological inference and Public Health planning. For multi-serotype pathogens, however, different levels of serotype-specific immunity make it difficult to assess the population at risk. In this
We study the optimality conditions of information transfer in systems with memory in the low signal-to-noise ratio regime of vanishing input amplitude. We find that the optimal mutual information is represented by a maximum-variance of the signal tim
Cryptocurrencies return cross-predictability and technological similarity yield information on risk propagation and market segmentation. To investigate these effects, we build a time-varying network for cryptocurrencies, based on the evolution of ret