ﻻ يوجد ملخص باللغة العربية
Cryptocurrencies return cross-predictability and technological similarity yield information on risk propagation and market segmentation. To investigate these effects, we build a time-varying network for cryptocurrencies, based on the evolution of return cross-predictability and technological similarities. We develop a dynamic covariate-assisted spectral clustering method to consistently estimate the latent community structure of cryptocurrencies network that accounts for both sets of information. We demonstrate that investors can achieve better risk diversification by investing in cryptocurrencies from different communities. A cross-sectional portfolio that implements an inter-crypto momentum trading strategy earns a 1.08% daily return. By dissecting the portfolio returns on behavioral factors, we confirm that our results are not driven by behavioral mechanisms.
Code is law is the funding principle of cryptocurrencies. The security, transferability, availability and other properties of a crypto-asset are determined by the code through which it is created. If code is open source, as it happens for most crypto
This letter explores the behavior of conditional correlations among main cryptocurrencies, stock and bond indices, and gold, using a generalized DCC class model. From a portfolio management point of view, asset correlation is a key metric in order to
We consider the problem of neural network training in a time-varying context. Machine learning algorithms have excelled in problems that do not change over time. However, problems encountered in financial markets are often time-varying. We propose th
This paper discusses the dynamics of intraday prices of twelve cryptocurrencies during last months boom and bust. The importance of this study lies on the extended coverage of the cryptoworld, accounting for more than 90% of the total daily turnover.
Prognostic models in survival analysis are aimed at understanding the relationship between patients covariates and the distribution of survival time. Traditionally, semi-parametric models, such as the Cox model, have been assumed. These often rely on