ﻻ يوجد ملخص باللغة العربية
The $L$-link binary Chief Executive Officer (CEO) problem under logarithmic loss is investigated in this paper. A quantization splitting technique is applied to convert the problem under consideration to a $(2L-1)$-step successive Wyner-Ziv (WZ) problem, for which a practical coding scheme is proposed. In the proposed scheme, low-density generator-matrix (LDGM) codes are used for binary quantization while low-density parity-check (LDPC) codes are used for syndrome generation; the decoder performs successive decoding based on the received syndromes and produces a soft reconstruction of the remote source. The simulation results indicate that the rate-distortion performance of the proposed scheme can approach the theoretical inner bound based on binary-symmetric test-channel models.
An $l$-link binary CEO problem is considered in this paper. We present a practical encoding and decoding scheme for this problem employing the graph-based codes. A successive coding scheme is proposed for converting an $l$-link binary CEO problem to
In this paper, we propose an efficient coding scheme for the binary Chief Executive Officer (CEO) problem under logarithmic loss criterion. Courtade and Weissman obtained the exact rate-distortion bound for a two-link binary CEO problem under this cr
In this paper, we propose an efficient coding scheme for the two-link binary Chief Executive Officer (CEO) problem under logarithmic loss criterion. The exact rate-distortion bound for a two-link binary CEO problem under the logarithmic loss has been
The combination of source coding with decoder side-information (Wyner-Ziv problem) and channel coding with encoder side-information (Gelfand-Pinsker problem) can be optimally solved using the separation principle. In this work we show an alternative
A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one.