ﻻ يوجد ملخص باللغة العربية
An $l$-link binary CEO problem is considered in this paper. We present a practical encoding and decoding scheme for this problem employing the graph-based codes. A successive coding scheme is proposed for converting an $l$-link binary CEO problem to the $(2l-1)$ single binary Wyner-Ziv (WZ) problems. By using the compound LDGM-LDPC codes, the theoretical bound of each binary WZ is asymptotically achievable. Our proposed decoder successively decodes the received data by employing the well-known Sum-Product (SP) algorithm and leverages them to reconstruct the source. The sum-rate distortion performance of our proposed coding scheme is compared with the theoretical bounds under the logarithmic loss (log-loss) criterion.
The $L$-link binary Chief Executive Officer (CEO) problem under logarithmic loss is investigated in this paper. A quantization splitting technique is applied to convert the problem under consideration to a $(2L-1)$-step successive Wyner-Ziv (WZ) prob
In this paper, we propose an efficient coding scheme for the two-link binary Chief Executive Officer (CEO) problem under logarithmic loss criterion. The exact rate-distortion bound for a two-link binary CEO problem under the logarithmic loss has been
In this paper, we propose an efficient coding scheme for the binary Chief Executive Officer (CEO) problem under logarithmic loss criterion. Courtade and Weissman obtained the exact rate-distortion bound for a two-link binary CEO problem under this cr
The combination of source coding with decoder side-information (Wyner-Ziv problem) and channel coding with encoder side-information (Gelfand-Pinsker problem) can be optimally solved using the separation principle. In this work we show an alternative
A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one.