ﻻ يوجد ملخص باللغة العربية
The long-standing problem of representing the general massive one-loop Feynman integral as a meromorphic function of the space-time dimension $d$ has been solved for the basis of scalar one- to four-point functions with indices one. In 2003 the solution of difference equations in the space-time dimension allowed to determine the necessary classes of special functions: self-energies need ordinary logarithms and Gauss hypergeometric functions $_2F_1$, vertices need additionally Kamp{e} de F{e}riet-Appell functions $F_1$, and box integrals also Lauricella-Saran functions $F_S$. In this study, alternative recursive Mellin-Barnes representations are used for the representation of $n$-point functions in terms of $(n-1)$-point functions. The approach enabled the first derivation of explicit solutions for the Feynman integrals at arbitrary kinematics. In this article, we scetch our new representations for the general massive vertex and box Feynman integrals and derive a numerical approach for the necessary Appell functions $F_1$ and Saran functions $F_S$ at arbitrary kinematical arguments.
Representations are derived for the basic scalar one-loop vertex Feynman integrals as meromorphic functions of the space-time dimension $d$ in terms of (generalized) hypergeometric functions $_2F_1$ and $F_1$. Values at asymptotic or exceptional kine
In this paper, we propose a new method for evaluating scalar one-loop Feynman integrals in generalized D-dimension. The calculations play an important building block for two-loop and higher-loop corrections to the processes at future colliders such a
We report on the progress in constructing contracted one-loop tensors. Analytic results for rank R=4 tensors, cross-checked numerically, are presented for the first time.
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To sol
In this paper, we describe a numerical approach to evaluate Feynman loop integrals. In this approach the key technique is a combination of a numerical integration method and a numerical extrapolation method. Since the computation is carried out in a