ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a new method for evaluating scalar one-loop Feynman integrals in generalized D-dimension. The calculations play an important building block for two-loop and higher-loop corrections to the processes at future colliders such as the Large Hadron Collider (LHC) and the International Linear Collider (ILC). In this method, scalar one-loop N-point functions will be presented as the one-fold Mellin-Barnes representation of (N-1)-point ones with shifting space-time dimension. This representation offers a clear advantage that we can construct recursively the analytic expressions for N-point functions from the basic ones which are one-point functions. The compact formulae for scalar one-loop two-point functions with massive internal lines and three-point, four-point functions with massless internal lines are given as examples in this article. In particular, they are written in terms of generalized hypergeometric series such as Gauss, Appell F 1 functions. We also perform a sample numerical check for the analytical expressions in this report by comparing with LoopTools and AMBRE/MB. We find that the numerical results from this work are in good agreement with LoopTools at $epsilon^0$ -expansion and AMBRE/MB at higher-order of $epsilon$-expansion, at higher D-dimension.
The long-standing problem of representing the general massive one-loop Feynman integral as a meromorphic function of the space-time dimension $d$ has been solved for the basis of scalar one- to four-point functions with indices one. In 2003 the solut
Representations are derived for the basic scalar one-loop vertex Feynman integrals as meromorphic functions of the space-time dimension $d$ in terms of (generalized) hypergeometric functions $_2F_1$ and $F_1$. Values at asymptotic or exceptional kine
We discuss briefly the first numerical implementation of the Loop-Tree Duality (LTD) method. We apply the LTD method in order to calculate ultraviolet and infrared finite multi-leg one-loop Feynman integrals. We attack scalar and tensor integrals wit
A complete one-loop matching calculation for real singlet scalar extensions of the Standard Model to the Standard Model effective field theory (SMEFT) of dimension-six operators is presented. We compare our analytic results obtained by using Feynman
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To sol