ﻻ يوجد ملخص باللغة العربية
This paper proposes a new and efficient method to estimate 6-DoF ego-states: attitudes and positions in real time. The proposed method extract information of ego-states by observing a feature called TROVE (Three Rays and One VErtex). TROVE features are projected from structures that are ubiquitous on man-made constructions and objects. The proposed method does not search for conventional corner-type features nor use Perspective-n-Point (PnP) methods, and it achieves a real-time estimation of attitudes and positions up to 60 Hz. The accuracy of attitude estimates can reach 0.3 degrees and that of position estimates can reach 2 cm in an indoor environment. The result shows a promising approach for unmanned robots to localize in an environment that is rich in man-made structures.
Stereo relative pose problem lies at the core of stereo visual odometry systems that are used in many applications. In this work, we present two minimal solvers for the stereo relative pose. We specifically consider the case when a minimal set consis
Multi-person articulated pose tracking in unconstrained videos is an important while challenging problem. In this paper, going along the road of top-down approaches, we propose a decent and efficient pose tracker based on pose flows. First, we design
Object detection has been vigorously investigated for years but fast accurate detection for real-world scenes remains a very challenging problem. Overcoming drawbacks of single-stage detectors, we take aim at precisely detecting objects for static an
Up-to-date High-Definition (HD) maps are essential for self-driving cars. To achieve constantly updated HD maps, we present a deep neural network (DNN), Diff-Net, to detect changes in them. Compared to traditional methods based on object detectors, t
Existing state-of-the-art human pose estimation methods require heavy computational resources for accurate predictions. One promising technique to obtain an accurate yet lightweight pose estimator is knowledge distillation, which distills the pose kn