ﻻ يوجد ملخص باللغة العربية
Existing state-of-the-art human pose estimation methods require heavy computational resources for accurate predictions. One promising technique to obtain an accurate yet lightweight pose estimator is knowledge distillation, which distills the pose knowledge from a powerful teacher model to a less-parameterized student model. However, existing pose distillation works rely on a heavy pre-trained estimator to perform knowledge transfer and require a complex two-stage learning procedure. In this work, we investigate a novel Online Knowledge Distillation framework by distilling Human Pose structure knowledge in a one-stage manner to guarantee the distillation efficiency, termed OKDHP. Specifically, OKDHP trains a single multi-branch network and acquires the predicted heatmaps from each, which are then assembled by a Feature Aggregation Unit (FAU) as the target heatmaps to teach each branch in reverse. Instead of simply averaging the heatmaps, FAU which consists of multiple parallel transformations with different receptive fields, leverages the multi-scale information, thus obtains target heatmaps with higher-quality. Specifically, the pixel-wise Kullback-Leibler (KL) divergence is utilized to minimize the discrepancy between the target heatmaps and the predicted ones, which enables the student network to learn the implicit keypoint relationship. Besides, an unbalanced OKDHP scheme is introduced to customize the student networks with different compression rates. The effectiveness of our approach is demonstrated by extensive experiments on two common benchmark datasets, MPII and COCO.
Existing video-based human pose estimation methods extensively apply large networks onto every frame in the video to localize body joints, which suffer high computational cost and hardly meet the low-latency requirement in realistic applications. To
We propose a learning framework named Feature Fusion Learning (FFL) that efficiently trains a powerful classifier through a fusion module which combines the feature maps generated from parallel neural networks. Specifically, we train a number of para
Traditional knowledge distillation uses a two-stage training strategy to transfer knowledge from a high-capacity teacher model to a compact student model, which relies heavily on the pre-trained teacher. Recent online knowledge distillation alleviate
Multi-person articulated pose tracking in unconstrained videos is an important while challenging problem. In this paper, going along the road of top-down approaches, we propose a decent and efficient pose tracker based on pose flows. First, we design
Previous Online Knowledge Distillation (OKD) often carries out mutually exchanging probability distributions, but neglects the useful representational knowledge. We therefore propose Multi-view Contrastive Learning (MCL) for OKD to implicitly capture