ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical feature fusion framework for frequency recognition in SSVEP-based BCIs

60   0   0.0 ( 0 )
 نشر من قبل Yangsong Zhang
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Effective frequency recognition algorithms are critical in steady-state visual evoked potential (SSVEP) based brain-computer interfaces (BCIs). In this study, we present a hierarchical feature fusion framework which can be used to design high-performance frequency recognition methods. The proposed framework includes two primary technique for fusing features: spatial dimension fusion (SD) and frequency dimension fusion (FD). Both SD and FD fusions are obtained using a weighted strategy with a nonlinear function. To assess our novel methods, we used the correlated component analysis (CORRCA) method to investigate the efficiency and effectiveness of the proposed framework. Experimental results were obtained from a benchmark dataset of thirty-five subjects and indicate that the extended CORRCA method used within the framework significantly outperforms the original CORCCA method. Accordingly, the proposed framework holds promise to enhance the performance of frequency recognition methods in SSVEP-based BCIs.



قيم البحث

اقرأ أيضاً

Canonical correlation analysis (CCA) is a state-of-the-art method for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. Various extended methods have been developed, and among such met hods, a combination method of CCA and individual-template-based CCA (IT-CCA) has achieved excellent performance. However, CCA requires the canonical vectors to be orthogonal, which may not be a reasonable assumption for EEG analysis. In the current study, we propose using the correlated component analysis (CORRCA) rather than CCA to implement frequency recognition. CORRCA can relax the constraint of canonical vectors in CCA, and generate the same projection vector for two multichannel EEG signals. Furthermore, we propose a two-stage method based on the basic CORRCA method (termed TSCORRCA). Evaluated on a benchmark dataset of thirty-five subjects, the experimental results demonstrate that CORRCA significantly outperformed CCA, and TSCORRCA obtained the best performance among the compared methods. This study demonstrates that CORRCA-based methods have great potential for implementing high-performance SSVEP-based BCI systems.
Many physical, biological and neural systems behave as coupled oscillators, with characteristic phase coupling across different frequencies. Methods such as $n:m$ phase locking value and bi-phase locking value have previously been proposed to quantif y phase coupling between two resonant frequencies (e.g. $f$, $2f/3$) and across three frequencies (e.g. $f_1$, $f_2$, $f_1+f_2$), respectively. However, the existing phase coupling metrics have their limitations and limited applications. They cannot be used to detect or quantify phase coupling across multiple frequencies (e.g. $f_1$, $f_2$, $f_3$, $f_4$, $f_1+f_2+f_3-f_4$), or coupling that involves non-integer multiples of the frequencies (e.g. $f_1$, $f_2$, $2f_1/3+f_2/3$). To address the gap, this paper proposes a generalized approach, named multi-phase locking value (M-PLV), for the quantification of various types of instantaneous multi-frequency phase coupling. Different from most instantaneous phase coupling metrics that measure the simultaneous phase coupling, the proposed M-PLV method also allows the detection of delayed phase coupling and the associated time lag between coupled oscillators. The M-PLV has been tested on cases where synthetic coupled signals are generated using white Gaussian signals, and a system comprised of multiple coupled Rossler oscillators. Results indicate that the M-PLV can provide a reliable estimation of the time window and frequency combination where the phase coupling is significant, as well as a precise determination of time lag in the case of delayed coupling. This method has the potential to become a powerful new tool for exploring phase coupling in complex nonlinear dynamic systems.
Automatic emotion recognition (AER) based on enriched multimodal inputs, including text, speech, and visual clues, is crucial in the development of emotionally intelligent machines. Although complex modality relationships have been proven effective f or AER, they are still largely underexplored because previous works predominantly relied on various fusion mechanisms with simply concatenated features to learn multimodal representations for emotion classification. This paper proposes a novel hierarchical fusion graph convolutional network (HFGCN) model that learns more informative multimodal representations by considering the modality dependencies during the feature fusion procedure. Specifically, the proposed model fuses multimodality inputs using a two-stage graph construction approach and encodes the modality dependencies into the conversation representation. We verified the interpretable capabilities of the proposed method by projecting the emotional states to a 2D valence-arousal (VA) subspace. Extensive experiments showed the effectiveness of our proposed model for more accurate AER, which yielded state-of-the-art results on two public datasets, IEMOCAP and MELD.
To explain individual differences in development, behavior, and cognition, most previous studies focused on projecting resting-state functional MRI (fMRI) based functional connectivity (FC) data into a low-dimensional space via linear dimensionality reduction techniques, followed by executing analysis operations. However, linear dimensionality analysis techniques may fail to capture nonlinearity of brain neuroactivity. Moreover, besides resting-state FC, FC based on task fMRI can be expected to provide complementary information. Motivated by these considerations, we nonlinearly fuse resting-state and task-based FC networks (FCNs) to seek a better representation in this paper. We propose a framework based on alternating diffusion map (ADM), which extracts geometry-preserving low-dimensional embeddings that successfully parameterize the intrinsic variables driving the phenomenon of interest. Specifically, we first separately build resting-state and task-based FCNs by symmetric positive definite matrices using sparse inverse covariance estimation for each subject, and then utilize the ADM to fuse them in order to extract significant low-dimensional embeddings, which are used as fingerprints to identify individuals. The proposed framework is validated on the Philadelphia Neurodevelopmental Cohort data, where we conduct extensive experimental study on resting-state and fractal $n$-back task fMRI for the classification of intelligence quotient (IQ). The fusion of resting-state and $n$-back task fMRI by the proposed framework achieves better classification accuracy than any single fMRI, and the proposed framework is shown to outperform several other data fusion methods. To our knowledge, this paper is the first to demonstrate a successful extension of the ADM to fuse resting-state and task-based fMRI data for accurate prediction of IQ.
131 - Guangwei Gao , Yi Yu , Jian Yang 2021
Cross-resolution face recognition (CRFR), which is important in intelligent surveillance and biometric forensics, refers to the problem of matching a low-resolution (LR) probe face image against high-resolution (HR) gallery face images. Existing shal low learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space where the resolution discrepancy is mitigated. However, little works consider how to extract and utilize the intermediate discriminative features from the noisy LR query faces to further mitigate the resolution discrepancy due to the resolution limitations. In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR. In particular, our contributions are threefold. (i) To learn more robust and discriminative features, we desire to adaptively fuse the contextual features from different layers. (ii) To fully exploit these contextual features, we design a feature set-based representation learning (FSRL) scheme to collaboratively represent the hierarchical features for more accurate recognition. Moreover, FSRL utilizes the primitive form of feature maps to keep the latent structural information, especially in noisy cases. (iii) To further promote the recognition performance, we desire to fuse the hierarchical recognition outputs from different stages. Meanwhile, the discriminability from different scales can also be fully integrated. By exploiting these advantages, the efficiency of the proposed method can be delivered. Experimental results on several face datasets have verified the superiority of the presented algorithm to the other competitive CRFR approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا