ﻻ يوجد ملخص باللغة العربية
Effective frequency recognition algorithms are critical in steady-state visual evoked potential (SSVEP) based brain-computer interfaces (BCIs). In this study, we present a hierarchical feature fusion framework which can be used to design high-performance frequency recognition methods. The proposed framework includes two primary technique for fusing features: spatial dimension fusion (SD) and frequency dimension fusion (FD). Both SD and FD fusions are obtained using a weighted strategy with a nonlinear function. To assess our novel methods, we used the correlated component analysis (CORRCA) method to investigate the efficiency and effectiveness of the proposed framework. Experimental results were obtained from a benchmark dataset of thirty-five subjects and indicate that the extended CORRCA method used within the framework significantly outperforms the original CORCCA method. Accordingly, the proposed framework holds promise to enhance the performance of frequency recognition methods in SSVEP-based BCIs.
Canonical correlation analysis (CCA) is a state-of-the-art method for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. Various extended methods have been developed, and among such met
Many physical, biological and neural systems behave as coupled oscillators, with characteristic phase coupling across different frequencies. Methods such as $n:m$ phase locking value and bi-phase locking value have previously been proposed to quantif
Automatic emotion recognition (AER) based on enriched multimodal inputs, including text, speech, and visual clues, is crucial in the development of emotionally intelligent machines. Although complex modality relationships have been proven effective f
To explain individual differences in development, behavior, and cognition, most previous studies focused on projecting resting-state functional MRI (fMRI) based functional connectivity (FC) data into a low-dimensional space via linear dimensionality
Cross-resolution face recognition (CRFR), which is important in intelligent surveillance and biometric forensics, refers to the problem of matching a low-resolution (LR) probe face image against high-resolution (HR) gallery face images. Existing shal