ﻻ يوجد ملخص باللغة العربية
We show how nonclassical correlations in local bipartite states can act as a resource for quantum information processing. Considering the task of quantum random access codes (RAC) through separable Bell-diagonal states, we demonstrate the advantage of superunsteerability over classical protocols assisted with two-bits of shared randomness. We propose a measure of superunsteerability, which quantifies nonclassicality beyond quantum steering, and obtain its analytical expression for Bell-diagonal states in the context of the two- and three-setting steering scenarios that are directly related to the quantum $2 to 1$ and $3 to 1$ RAC protocols, respectively. The maximal values of our quantifier yield the optimal quantum efficiency for both of the above protocols, thus showing that superunsteerability provides a precise characterization of the nonclassical resource for implementing RACs with separable Bell-diagonal class of states.
We investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering party. In the simplest nontrivial scenario of two projective measurements, we solve this problem completely by virtue of the connection be
Bounds of the minimum evolution time between two distinguishable states of a system can help to assess the maximal speed of quantum computers and communication channels. We study the quantum speed limit time of a composite quantum states in the prese
We propose and theoretically investigate an unambiguous Bell measurement of atomic qubits assisted by multiphoton states. The atoms interact resonantly with the electromagnetic field inside two spatially separated optical cavities in a Ramsey-type in
A decomposition form is introduced in this report to establish a criterion for the bi-partite separability of Bell diagonal states. A such criterion takes a quadratic form of the coefficients of a given Bell diagonal states and can be derived via a s
We provide a simple class of 2-qudit states for which one is able to formulate necessary and sufficient conditions for separability. As a byproduct we generalize well known construction provided by Horodecki et al. for d=3. It is hoped that these sta