ﻻ يوجد ملخص باللغة العربية
The trigonometric su(n) spin chain with anti-periodic boundary condition (su(n) spin torus) is demonstrated to be Yang-Baxter integrable. Based on some intrinsic properties of the R-matrix, certain operator product identities of the transfer matrix are derived. These identities and the asymptotic behavior of the transfer matrix together allow us to obtain the exact eigenvalues in terms of an inhomogeneous T-Q relation via the off-diagonal Bethe Ansatz.
The nested off-diagonal Bethe ansatz is generalized to study the quantum spin chain associated with the $SU_q(3)$ R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities amon
An integrable Heisenberg spin chain with nearest-neighbour couplings, next-nearest-neighbour couplings and Dzyaloshinski-Moriya interacton is constructed. The integrability of the model is proven. Based on the Bethe Ansatz solutions, the ground state
The off-diagonal Bethe ansatz method is generalized to the integrable model associated with the $sp(4)$ (or $C_2$) Lie algebra. By using the fusion technique, we obtain the complete operator product identities among the fused transfer matrices. These
The graded off-diagonal Bethe ansatz method is proposed to study supersymmetric quantum integrable models (i.e., quantum integrable models associated with superalgebras). As an example, the exact solutions of the $SU(2|2)$ vertex model with both peri
The Izergin-Korepin model with general non-diagonal boundary terms, a typical integrable model beyond A-type and without U(1)-symmetry, is studied via the off-diagonal Bethe ansatz method. Based on some intrinsic properties of the R-matrix and the K-