ﻻ يوجد ملخص باللغة العربية
We quantify the star formation (SF) in the inner cores ($mathcal{R}$/$R_{200}$$leq$0.3) of 24 massive galaxy clusters at 0.2$lesssim$$z$$lesssim$0.9 observed by the $Herschel$ Lensing Survey and the Cluster Lensing and Supernova survey with $Hubble$. These programmes, covering the rest-frame ultraviolet to far-infrared regimes, allow us to accurately characterize stellar mass-limited ($mathcal{M}_{*}$$>$$10^{10}$ $M_{odot}$) samples of star-forming cluster members (not)-detected in the mid- and/or far-infrared. We release the catalogues with the photometry, photometric redshifts, and physical properties of these samples. We also quantify the SF displayed by comparable field samples from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We find that in intermediate-$z$ cluster cores, the SF activity is suppressed with respect the field in terms of both the fraction ($mathcal{F}$) of star-forming galaxies (SFG) and the rate at which they form stars ($mathcal{SFR}$ and $smathcal{SFR} = mathcal{SFR}/mathcal{M}_{*}$). On average, the $mathcal{F}$ of SFGs is a factor $sim$$2$ smaller in cluster cores than in the field. Furthermore, SFGs present average $mathcal{SFR}$ and $smathcal{SFR}$ typically $sim$0.3 dex smaller in the clusters than in the field along the whole redshift range probed. Our results favour long time-scale quenching physical processes as the main driver of SF suppression in the inner cores of clusters since $z$$sim$0.9, with shorter time-scale processes being very likely responsible for a fraction of the missing SFG population.
We use both photometric and spectroscopic data from the {it Hubble Space Telescope} to explore the relationships among 4000 AA break (D4000) strength, colors, stellar masses, and morphology, in a sample of 352 galaxies with log$(M_{*}/M_{odot}) > 9.4
We present the discovery and spectrophotometric characterization of a large sample of 164 faint ($i_{AB}$ $sim$ $23$-$25$ mag) star-forming dwarf galaxies (SFDGs) at redshift $0.13$ $leq z leq$ $0.88$ selected by the presence of bright optical emissi
We present an analysis of the environment of six QSO triplets at 1 $lesssim$ z $lesssim$ 1.5 by analyzing multiband (r,i,z, or g,r,i) images obtained with Megacam at the CFHT telescope, aiming to investigate whether they are associated or not with ga
We present Lyman continuum (LyC) radiation escape fraction $f_{rm{esc}}$ measurements for 183 spectroscopically confirmed star-forming galaxies in the redshift range $3.11 < z < 3.53$ in the textit{Chandra} Deep Field South. We use ground-based imagi
Galaxies at low-redshift typically possess negative gas-phase metallicity gradients (centres more metal-rich than their outskirts). Whereas, it is not uncommon to observe positive metallicity gradients in higher-redshift galaxies ($z gtrsim 0.6$). Br