ﻻ يوجد ملخص باللغة العربية
Drainage basins are essential to Geohydrology and Biodiversity. Defining those regions in a simple, robust and efficient way is a constant challenge in Earth Science. Here, we introduce a model to delineate multiple drainage basins through an extension of the Invasion Percolation-Based Algorithm (IPBA). In order to prove the potential of our approach, we apply it to real and artificial datasets. We observe that the perimeter and area distributions of basins and anti-basins display long tails extending over several orders of magnitude and following approximately power-law behaviors. Moreover, the exponents of these power laws depend on spatial correlations and are invariant under the landscape orientation, not only for terrestrial, but lunar and martian landscapes. The terrestrial and martian results are statistically identical, which suggests that a hypothetical martian river would present similarity to the terrestrial rivers. Finally, we propose a theoretical value for the Hacks exponent based on the fractal dimension of watersheds, $gamma=D/2$. We measure $gamma=0.54 pm 0.01$ for Earth, which is close to our estimation of $gamma approx 0.55$. Our study suggests that Hacks law can have its origin purely in the maximum and minimum lines of the landscapes.
Erosion by flowing water is one of the major forces shaping the surface of Earth. Studies in the last decade have shown, in particular, that the drainage region of rivers, where water is collected, exhibits scale invariant features characterized by e
We consider the two dimensional version of a drainage network model introduced by Gangopadhyay, Roy and Sarkar, and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the conv
A new simulation method for solving fluid-structure coupling problems has been developed. All the basic equations are numerically solved on a fixed Cartesian grid using a finite difference scheme. A volume-of-fluid formulation (Hirt and Nichols (1981
The reliability of atomistic simulations depends on the quality of the underlying energy models providing the source of physical information, for instance for the calculation of migration barriers in atomistic Kinetic Monte Carlo simulations. Accurat
The sampling problem lies at the heart of atomistic simulations and over the years many different enhanced sampling methods have been suggested towards its solution. These methods are often grouped into two broad families. On the one hand methods suc