ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing spatial extent of topological surface states by weak antilocalization experiments

192   0   0.0 ( 0 )
 نشر من قبل Krzysztof Dybko Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weak antilocalization measurements has become a standard tool for studying quantum coherent transport in topological materials. It is often used to extract information about number of conducting channels and dephasing length of topological surface states. We study thin films of prototypical topological crystalline insulator SnTe. To access microscopic characteristic of these states we employ a model developed by Tkachov and Hankiewicz, [Physical Review B 84, 035444]. Using this model the spatial decay of the topological states is obtained from measurements of quantum corrections to the conductivity in perpendicular and parallel configurations of the magnetic field. Within this model we find interaction between two topological boundaries which results in scaling of the spatial decay with the film thickness. We attribute this behavior to bulk reservoir which mediates interactions by scattering events without phase breaking of topological carriers.



قيم البحث

اقرأ أيضاً

Topological insulators (TIs) represent a novel quantum state of matter, characterized by edge or surface-states, showing up on the topological character of the bulk wave functions. Allowing electrons to move along their surface, but not through their inside, they emerged as an intriguing material platform for the exploration of exotic physical phenomena, somehow resembling the graphene Dirac-cone physics, as well as for exciting applications in optoelectronics, spintronics, nanoscience, low-power electronics, and quantum computing. Investigation of topological surface states (TSS) is conventionally hindered by the fact that in most of experimental conditions the TSS properties are mixed up with those of bulk-states. Here, we devise a novel tool to unveil TSS and to probe related plasmonic effects. By engineering Bi2Te(3-x)Sex stoichiometry, and by gating the surface of nanoscale field-effect-transistors, exploiting thin flakes of Bi2Te2.2Se0.8 or Bi2Se3, we provide the first demonstration of room-temperature Terahertz (THz) detection mediated by over-damped plasma-wave oscillations on the activated TSS of a Bi2Te2.2Se0.8 flake. The reported detection performances allow a realistic exploitation of TSS for large-area, fast imaging, promising superb impacts on THz photonics.
We report on van der Waals epitaxial growth, materials characterization and magnetotransport experiments in crystalline nanosheets of Bismuth Telluro-Sulfide (BTS). Highly layered, good-quality crystalline nanosheets of BTS are obtained on SiO$_2$ an d muscovite mica. Weak-antilocalization (WAL), electron-electron interaction-driven insulating ground state and universal conductance fluctuations are observed in magnetotransport experiments on BTS devices. Temperature, thickness and magnetic field dependence of the transport data indicate the presence of two-dimensional surface states along with bulk conduction, in agreement with theoretical models. An extended-WAL model is proposed and utilized in conjunction with a two-channel conduction model to analyze the data, revealing a surface component and evidence of multiple conducting channels. A facile growth method and detailed magnetotransport results indicating BTS as an alternative topological insulator material system are presented.
138 - Jiashu Wang , X. Liu , C. Bunker 2020
We report the measurements and analysis of weak antilocalization (WAL) in Pb1-xSnxSe topological quantum wells in a new regime where the elastic scattering length is larger than the magnetic length. We achieve this regime through the development of h igh-quality epitaxy and doping of topological crystalline insulator (TCI) quantum wells. We obtain elastic scattering lengths that exceeds 100nm and become comparable to the magnetic length. In this transport regime, the Hikami-Larkin-Nagaoka model is no longer valid. We employ the model of Wittmann and Schmid to extract the coherence time from the magnetoresistance. We find that despite our improved transport characteristics, the coherence time may be limited by scattering channels that are not strongly carrier dependent, such as electron-phonon or defect scattering.
Many conductors, including recently studied Dirac materials, show saturation of coherence length on decreasing temperature. This surprising phenomenon is assigned to external noise, residual magnetic impurities or two-level systems specific to non-cr ystalline solids. Here, by considering the SnTe-class of compounds as an example, we show theoretically that breaking of mirror symmetry deteriorates Berrys phase quantization, leading to additional dephasing in weak-antilocalization magnetoresistance (WAL-MR). Our experimental studies of WAL-MR corroborate these theoretical expectations in (111) Pb$_{1-x}$Sn$_x$Se thin film with Sn contents $x$ corresponding to both topological crystalline insulator and topologically trivial phases. In particular, we find the shortening of the phase coherence length in samples with intentionally broken mirror symmetry. Our results indicate that the classification of quantum transport phenomena into universality classes should encompass, in addition to time-reversal and spin-rotation invariances, spatial symmetries in specific systems.
127 - Chang Niu , Gang Qiu , Yixiu Wang 2019
Tellurium (Te) has attracted great research interest due to its unique crystal structure since 1970s. However, the conduction band of Te is rarely studied experimentally because of the intrinsic p-type nature of Te crystal. By atomic layer deposited dielectric doping technique, we are able to access the conduction band transport properties of Te in a controlled fashion. In this paper, we report on a systematic study of weak-antilocalization (WAL) effect in n-type two-dimensional (2D) Te films. We find that the WAL agrees well with Iordanskii, Lyanda-Geller, and Pikus (ILP) theory. The gate and temperature dependent WAL reveals that Dyakonov-Perel (DP) mechanism is dominant for spin relaxation and phase relaxation is governed by electron-electron (e-e) interaction. Large phase coherence length near 600nm at T=1K is obtained, together with gate tunable spin-orbit interaction (SOI). Transition from weak-localization (WL) to weak-antilocalization (WAL) depending on gate bias is also observed. These results demonstrate that newly developed solution-based synthesized Te films provide a new controllable strong SOI 2D semiconductor with high potential for spintronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا