ترغب بنشر مسار تعليمي؟ اضغط هنا

Gate-tunable Strong Spin-orbit Interaction in Two-dimensional Tellurium Probed by Weak-antilocalization

128   0   0.0 ( 0 )
 نشر من قبل Chang Niu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tellurium (Te) has attracted great research interest due to its unique crystal structure since 1970s. However, the conduction band of Te is rarely studied experimentally because of the intrinsic p-type nature of Te crystal. By atomic layer deposited dielectric doping technique, we are able to access the conduction band transport properties of Te in a controlled fashion. In this paper, we report on a systematic study of weak-antilocalization (WAL) effect in n-type two-dimensional (2D) Te films. We find that the WAL agrees well with Iordanskii, Lyanda-Geller, and Pikus (ILP) theory. The gate and temperature dependent WAL reveals that Dyakonov-Perel (DP) mechanism is dominant for spin relaxation and phase relaxation is governed by electron-electron (e-e) interaction. Large phase coherence length near 600nm at T=1K is obtained, together with gate tunable spin-orbit interaction (SOI). Transition from weak-localization (WL) to weak-antilocalization (WAL) depending on gate bias is also observed. These results demonstrate that newly developed solution-based synthesized Te films provide a new controllable strong SOI 2D semiconductor with high potential for spintronic applications.



قيم البحث

اقرأ أيضاً

We study the spin-orbit interaction (SOI) in InAs/ GaSb and InAs quantum wells. We show through temperature- and gate-dependent magnetotransport measurements of weak antilocalization that the dominant spin-orbit relaxation mechanism in our low-mobili ty heterostructures is Elliott-Yafet and not Dyakonov-Perel in the form of the Rashba or Dresselhaus SOI as previously suggested. We compare our findings with recent work on this material system and show that the SOI length lies within the same range. The SOI length may be controlled using an electrostatic gate, opening up prospects for developing spintronic applications.
We develop an InAs nanowire gate-all-around field-effect transistor using a transparent conductive zinc oxide (ZnO) gate electrode, which is in-situ atomic layer deposited after growth of gate insulator of Al2O3. We perform magneto-transport measurem ents and find a crossover from weak localization to weak antilocalization effect with increasing gate voltage, which demonstrates that the Rashba spin-orbit coupling is tuned by the gate electrode. The efficiency of the gate tuning of the spin-orbit interaction is higher than those obtained for two-dimensional electron gas, and as high as that for a gate-all-around nanowire metal-oxide-semiconductor field-effect transistor that was previously reported. The spin-orbit interaction is discussed in line with not only conventionally used one-dimensional model but also recently proposed model that considers effects of microscopic band structures of materials.
We demonstrate that spin-orbit coupling (SOC) strength for electrons near the conduction band edge in few-layer $gamma$-InSe films can be tuned over a wide range. This tunability is the result of a competition between film-thickness-dependent intrins ic and electric-field-induced SOC, potentially, allowing for electrically switchable spintronic devices. Using a hybrid $mathbf{kcdot p}$ tight-binding model, fully parameterized with the help of density functional theory computations, we quantify SOC strength for various geometries of InSe-based field-effect transistors. The theoretically computed SOC strengths are compared with the results of weak antilocalization measurements on dual-gated multilayer InSe films, interpreted in terms of Dyakonov-Perel spin relaxation due to SOC, showing a good agreement between theory and experiment.
Spin-orbit coupling (SOC) is a relativistic effect, where an electron moving in an electric field experiences an effective magnetic field in its rest frame. In crystals without inversion symmetry, it lifts the spin degeneracy and leads to many magnet ic, spintronic and topological phenomena and applications. In bulk materials, SOC strength is a constant that cannot be modified. Here we demonstrate SOC and intrinsic spin-splitting in atomically thin InSe, which can be modified over an unprecedentedly large range. From quantum oscillations, we establish that the SOC parameter alpha is thickness-dependent; it can be continuously modulated over a wide range by an out-of-plane electric field, achieving intrinsic spin splitting tunable between 0 and 20 meV. Surprisingly, alpha could be enhanced by an order of magnitude in some devices, suggesting that SOC can be further manipulated. Our work highlights the extraordinary tunability of SOC in 2D materials, which can be harnessed for in operando spintronic and topological devices and applications.
In layered semiconductors with spin-orbit interaction (SOI) a persistent spin helix (PSH) state with suppressed spin relaxation is expected if the strengths of the Rashba and Dresselhaus SOI terms, alpha and beta, are equal. Here we demonstrate gate control and detection of the PSH in two-dimensional electron systems with strong SOI including terms cubic in momentum. We consider strain-free InGaAs/InAlAs quantum wells and first determine alpha/beta ~ 1 for non-gated structures by measuring the spin-galvanic and circular photogalvanic effects. Upon gate tuning the Rashba SOI strength in a complementary magneto-transport experiment, we then monitor the complete crossover from weak antilocalization via weak localization to weak antilocalization, where the emergence of weak localization reflects a PSH type state. A corresponding numerical analysis reveals that such a PSH type state indeed prevails even in presence of strong cubic SOI, however no longer at alpha = beta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا