ﻻ يوجد ملخص باللغة العربية
We demonstrate a large angular dependence of magnetization dynamics in Ni80Fe20 nano-cross arrays of varying sizes. By subtle variation of the azimuthal angle of an in-plane bias magnetic field, the spin configuration and the ensuing spin-wave dynamics, including mode softening, mode splitting, mode crossover and mode merging, can be drastically varied to the extent that a frequency minimum corresponding to mode softening converts to a mode crossover, various mode splitting and mode crossover disappear and additional mode splitting appears. Numerically simulated spin-wave spectra and phase profiles revealed the nature of various spin-wave modes and the origin of above variation of the dynamics with bias-field angle. All of these above observations are further modified with the variation of dimensions of the nano-cross. The numerically calculated magnetostatic field distributions further supports the variation of dynamics with bias-field angle. These results open a new avenue for engineering the nano-cross based magnetic devices such as magnetic storage, spin-wave logic and on-chip data communication devices.
The finite size and surface roughness effects on the magnetization of NiO nanoparticles is investigated. A large magnetic moment arises for an antiferromagnetic nanoparticle due to these effects. The magnetic moment without the surface roughness has
The magnetic behavior of bcc iron nanoclusters, with diameters between 2 and 8 nm, is investigated by means of spin dynamics (SD) simulations coupled to molecular dynamics (MD-SD), using a distance-dependent exchange interaction. Finite-size effects
We report on the magnetization dynamics of a square array of mesoscopic discs, fabricated from an iron palladium alloy film. The dynamics properties were explored using ferromagnetic resonance measurements and micromagnetic simulations. The obtained
We investigate the influence of Meissner screening and trapped magnetic flux on magnetization dynamics for a Ni80Fe20 film sandwiched between two thick Nb layers (100 nm) using broadband (5-20 GHz) ferromagnetic resonance (FMR) spectroscopy. Below th
We demonstrate the magnetization reversal features in NiFe/IrMn/NiFe thin-film structures with 40% and 75% relative content of Ni in Permalloy in the temperature range from 80 K to 300 K. At the descending branches of the hysteresis loops, the magnet