ﻻ يوجد ملخص باللغة العربية
We combine recent simulation work on the SFR--[C II] correlation at high redshift with empirical modeling of the galaxy--halo connection (via UniverseMachine) to forecast [C II] auto power spectra from $zsim4$ to $zsim8$. We compare these to sensitivities realistically expected from various instruments expected to come on-line in the next decade. If the predictions of our model are correct, [C II] should be detectable up to $zsim6$ in this generation of surveys, but detecting [C II] past the end of reionization will require a generational leap in line-intensity survey capabilities.
Observations of the high-redshift Universe using the 21 cm line of neutral hydrogen and complimentary emission lines from the first galaxies promise to open a new door for our understanding of the epoch of reionization. We present predictions for the
Intensity mapping of the HI 21 cm line and the CO 2.61 mm line from the epoch of reionization has emerged as powerful, complementary, probes of the high-redshift Universe. However, both maps and their cross-correlation are dominated by foregrounds. W
We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a mass dependent, but redshift independent, ef
Ultra-faint galaxies are hosted by small dark matter halos with shallow gravitational potential wells, hence their star formation activity is more sensitive to feedback effects. The shape of the faint-end of the high-$z$ galaxy luminosity function (L
We forecast the ability of future-generation experiments to detect the fine-structure lines of the carbon and oxygen ions, [CII] and [OIII] in intensity mapping (IM) from the Epoch of Reionization ($z sim 6-8$). Combining the latest empirically deriv