ﻻ يوجد ملخص باللغة العربية
Given an algorithm the quality of the output largely depends on a proper specification of the input parameters. A lot of work has been done to analyze tasks related to using a fixed model [25] and finding a good set of inputs. In this paper we present a different scenario, model building. In contrast to model usage the underlying algorithm, i.e. the underlying model, changes and therefore the associated parameters also change. Developing a new algorithm requires a particular set of parameters that, on the one hand, give access to an expected range of outputs and, on the other hand, are still interpretable. As the model is developed and parameters are added, deleted, or changed different features of the outputs are of interest. Therefore it is important to find objective measures that quantify these features. In a model building process these features are prone to change and need to be adaptable as the model changes. We discuss these problems in the application of cellPACK, a tool that generates virtual 3D cells. Our analysis is based on an output set generated by sampling the input parameter space. Hence we also present techniques and metrics to analyze an ensemble of probabilistic volumes.
Field-guided parametrization methods have proven effective for quad meshing of surfaces; these methods compute smooth cross fields to guide the meshing process and then integrate the fields to construct a discrete mesh. A key challenge in extending t
Real-time rendering and animation of humans is a core function in games, movies, and telepresence applications. Existing methods have a number of drawbacks we aim to address with our work. Triangle meshes have difficulty modeling thin structures like
We present the first algorithm for designing volumetric Michell Trusses. Our method uses a parametrization approach to generate trusses made of structural elements aligned with the primary direction of an objects stress field. Such trusses exhibit hi
In this paper, we present ScalarFlow, a first large-scale data set of reconstructions of real-world smoke plumes. We additionally propose a framework for accurate physics-based reconstructions from a small number of video streams. Central components
Users frequently seek to fabricate objects whose outer surfaces consist of regions with different surface attributes, such as color or material. Manufacturing such objects in a single piece is often challenging or even impossible. The alternative is