ﻻ يوجد ملخص باللغة العربية
We present the first algorithm for designing volumetric Michell Trusses. Our method uses a parametrization approach to generate trusses made of structural elements aligned with the primary direction of an objects stress field. Such trusses exhibit high strength-to-weight ratios. We demonstrate the structural robustness of our designs via a posteriori physical simulation. We believe our algorithm serves as an important complement to existing structural optimization tools and as a novel standalone design tool itself.
Field-guided parametrization methods have proven effective for quad meshing of surfaces; these methods compute smooth cross fields to guide the meshing process and then integrate the fields to construct a discrete mesh. A key challenge in extending t
Users frequently seek to fabricate objects whose outer surfaces consist of regions with different surface attributes, such as color or material. Manufacturing such objects in a single piece is often challenging or even impossible. The alternative is
Real-time rendering and animation of humans is a core function in games, movies, and telepresence applications. Existing methods have a number of drawbacks we aim to address with our work. Triangle meshes have difficulty modeling thin structures like
Given an algorithm the quality of the output largely depends on a proper specification of the input parameters. A lot of work has been done to analyze tasks related to using a fixed model [25] and finding a good set of inputs. In this paper we presen
An RNA sequence is a word over an alphabet on four elements ${A,C,G,U}$ called bases. RNA sequences fold into secondary structures where some bases match one another while others remain unpaired. Pseudoknot-free secondary structures can be represente