ﻻ يوجد ملخص باللغة العربية
It is well known that a single nonlinear fractional Schrodinger equation with a potential $V(x)$ and a small parameter $varepsilon $ may have a positive solution that is concentrated at the nondegenerate minimum point of $V(x)$. In this paper, we can find two different positive solutions for two weakly coupled fractional Schrodinger systems with a small parameter $varepsilon $ and two potentials $V_{1}(x)$ and $V_{2}(x)$ having the same minimum point are concentrated at the same point minimum point of $V_{1}(x)$ and $V_{2}left(xright) $. In fact that by using the energy estimates, Nehari manifold technique and the Lusternik-Schnirelmann theory of critical points, we obtain the multiplicity results for a class of fractional Laplacian system. Furthermore, the existence and nonexistence of least energy positive solutions are also explored.
This paper deals with the existence of positive solutions for the nonlinear system q(t)phi(p(t)u_{i}(t)))+f^{i}(t,textbf{u})=0,quad 0<t<1,quad i=1,2,...,n. This system often arises in the study of positive radial solutions of nonlinear elliptic syste
In this paper we deal with the multiplicity of positive solutions to the fractional Laplacian equation begin{equation*} (-Delta)^{frac{alpha}{2}} u=lambda f(x)|u|^{q-2}u+|u|^{2^{*}_{alpha}-2}u, quadtext{in},,Omega, u=0,text{on},,partialOmega, end
We establish the existence and multiplicity of positive solutions to the problems involving the fractional Laplacian: begin{equation*} left{begin{array}{lll} &(-Delta)^{s}u=lambda u^{p}+f(u),,,u>0 quad &mbox{in},,Omega, &u=0quad &mbox{in},,mathbb{R}^
This paper is devoted to study the existence and multiplicity solutions for the nonlinear Schrodinger-Poisson systems involving fractional Laplacian operator: begin{equation}label{eq*} left{ aligned &(-Delta)^{s} u+V(x)u+ phi u=f(x,u), quad &te
We study positive solutions to the fractional Lane-Emden system begin{equation*} tag{S}label{S} left{ begin{aligned} (-Delta)^s u &= v^p+mu quad &&text{in } Omega (-Delta)^s v &= u^q+ u quad &&text{in } Omega u = v &= 0 quad &&text{in } Omega^c={mat