ترغب بنشر مسار تعليمي؟ اضغط هنا

On the existence and multiplicity of solutions to fractional Lane-Emden elliptic systems involving measures

77   0   0.0 ( 0 )
 نشر من قبل Mousomi Bhakta
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study positive solutions to the fractional Lane-Emden system begin{equation*} tag{S}label{S} left{ begin{aligned} (-Delta)^s u &= v^p+mu quad &&text{in } Omega (-Delta)^s v &= u^q+ u quad &&text{in } Omega u = v &= 0 quad &&text{in } Omega^c={mathbb R}^N setminus Omega, end{aligned} right. end{equation*} where $Omega$ is a $C^2$ bounded domains in ${mathbb R}^N$, $sin(0,1)$, $N>2s$, $p>0$, $q>0$ and $mu,, u$ are positive measures in $Omega$. We prove the existence of the minimal positive solution of the above system under a smallness condition on the total mass of $mu$ and $ u$. Furthermore, if $p,q in (1,frac{N+s}{N-s})$ and $0 leq mu,, uin L^r(Omega)$ for some $r>frac{N}{2s}$ then we show the existence of at least two positive solutions of the above system. We also discuss the regularity of the solutions.



قيم البحث

اقرأ أيضاً

We classify solutions of finite Morse index of the fractional Lane- Emden equation
It is well known that a single nonlinear fractional Schrodinger equation with a potential $V(x)$ and a small parameter $varepsilon $ may have a positive solution that is concentrated at the nondegenerate minimum point of $V(x)$. In this paper, we can find two different positive solutions for two weakly coupled fractional Schrodinger systems with a small parameter $varepsilon $ and two potentials $V_{1}(x)$ and $V_{2}(x)$ having the same minimum point are concentrated at the same point minimum point of $V_{1}(x)$ and $V_{2}left(xright) $. In fact that by using the energy estimates, Nehari manifold technique and the Lusternik-Schnirelmann theory of critical points, we obtain the multiplicity results for a class of fractional Laplacian system. Furthermore, the existence and nonexistence of least energy positive solutions are also explored.
173 - Jinguo Zhang 2015
This paper is devoted to study the existence and multiplicity solutions for the nonlinear Schrodinger-Poisson systems involving fractional Laplacian operator: begin{equation}label{eq*} left{ aligned &(-Delta)^{s} u+V(x)u+ phi u=f(x,u), quad &te xt{in }mathbb{R}^3, &(-Delta)^{t} phi=u^2, quad &text{in }mathbb{R}^3, endaligned right. end{equation} where $(-Delta)^{alpha}$ stands for the fractional Laplacian of order $alphain (0,,,1)$. Under certain assumptions on $V$ and $f$, we obtain infinitely many high energy solutions for eqref{eq*} without assuming the Ambrosetti-Rabinowitz condition by using the fountain theorem.
152 - H.Chen , H. Hajaiej 2016
In this paper, we study existence of boundary blow-up solutions for elliptic equations involving regional fractional Laplacian. We also discuss the optimality of our results.
In this paper we deal with the multiplicity of positive solutions to the fractional Laplacian equation begin{equation*} (-Delta)^{frac{alpha}{2}} u=lambda f(x)|u|^{q-2}u+|u|^{2^{*}_{alpha}-2}u, quadtext{in},,Omega, u=0,text{on},,partialOmega, end {equation*} where $Omegasubset mathbb{R}^{N}(Ngeq 2)$ is a bounded domain with smooth boundary, $0<alpha<2$, $(-Delta)^{frac{alpha}{2}}$ stands for the fractional Laplacian operator, $fin C(Omegatimesmathbb{R},mathbb{R})$ may be sign changing and $lambda$ is a positive parameter. We will prove that there exists $lambda_{*}>0$ such that the problem has at least two positive solutions for each $lambdain (0,,,lambda_{*})$. In addition, the concentration behavior of the solutions are investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا