ﻻ يوجد ملخص باللغة العربية
We perform direct thermovoltage measurements in a single-electron transistor, using on-chip local thermometers, both in the linear and non-linear regimes. Using a model which accounts for co-tunneling, we find excellent agreement with the experimental data with no free parameters even when the temperature difference is larger than the average temperature (far-from-linear regime). This allows us to confirm the sensitivity of the thermovoltage on co-tunneling and to find that in the non-linear regime the temperature of the metallic island is a crucial parameter. Surprisingly, the metallic island tends to overheat even at zero net charge current, resulting in a reduction of the thermovoltage.
Single dopants in semiconductor nanostructures have been studied in great details recently as they are good candidates for quantum bits, provided they are coupled to a detector. Here we report coupling of a single As donor atom to a single-electron t
Starting from the Kubo formula for conductance, we calculate the frequency-dependent response of a single-electron transistor (SET) driven by an ac signal. Treating tunneling processes within the lowest order approximation, valid for a wide range of
We demonstrate sensitive and fast electrical measurements of a carbon nanotube mechanical resonator. The nanotube is configured as a single-electron transistor, whose conductance is a sensitive transducer for its own displacement. Using an impedance-
We report on combined measurements of heat and charge transport through a single-electron transistor. The device acts as a heat switch actuated by the voltage applied on the gate. The Wiedemann-Franz law for the ratio of heat and charge conductances
We present a linear-response theory for the thermopower of a single-electron transistor consisting of a superconducting island weakly coupled to two normal-conducting leads (NSN SET). The thermopower shows oscillations with the same periodicity as th