ﻻ يوجد ملخص باللغة العربية
According to theory, cluster radioactivity becomes an important decay mode in superheavy nuclei. In this work, we predict that the strongly-asymmetric fission, or cluster emission, is in fact the dominant fission channel for $^{294}_{118}$Og$_{176}$, which is currently the heaviest synthetic isotope known. Our theoretical approach incorporates important features of fission dynamics, including quantum tunneling and stochastic dynamics up to scission. We show that, despite appreciable differences in static fission properties such as fission barriers and spontaneous fission lifetimes, the prediction of cluster radioactivity in $^{294}_{118}$Og$_{176}$ is robust with respect to the details of calculations, including the choice of energy density functional, collective inertia, and the strength of the dissipation term.
A linear universal decay formula is presented starting from the microscopic mechanism of the charged-particle emission. It relates the half-lives of monopole radioactive decays with the $Q$-values of the outgoing particles as well as the masses and c
In the present work considering the contributions of the daughter nuclear charge and the orbital angular momentum taken away by the emitted proton, we propose a two-parameter formula of new Geiger-Nuttall law for proton radioactivity. A set of univer
In the present work, combining with the Geiger-Nuttall law, a two-parameter empirical formula is proposed to study the two-proton (2p) radioactivity. Using this formula, the calculated 2p radioactivity half-lives are in good agreement with the experi
Structural properties and the decay modes of the superheavy elements Z $=$ 122, 120, 118 are studied in a microscopic framework. We evaluate the binding energy, one- and two- proton and neutron separation energy, shell correction and density profile
In this study, a phenomenological model is proposed based on Wentzel-Kramers-Brillouin (WKB) theory and applied to investigate the two-proton ($2p$) radioactive half-lives of nuclei near or beyond the proton drip line. The total diproton-daughter nuc