ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural properties and decay modes of Z $=$ 122, 120 and 118 superheavy nuclei

125   0   0.0 ( 0 )
 نشر من قبل Gaurav Saxena
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Structural properties and the decay modes of the superheavy elements Z $=$ 122, 120, 118 are studied in a microscopic framework. We evaluate the binding energy, one- and two- proton and neutron separation energy, shell correction and density profile of even and odd isotopes of Z $=$ 122, 120, 118 (284 $leq$ A $leq$ 352) which show a reasonable match with FRDM results and the available experimental data. Equillibrium shape and deformation of the superheavy region are predicted. We investigate the possible decay modes of this region specifically $alpha$-decay, spontaneous fission (SF) and the $beta$-decay and evaluate the probable $alpha$-decay chains. The phenomena of bubble like structure in the charge density is predicted in $^{330}$122, $^{292,328}$120 and $^{326}$118 with significant depletion fraction around 20-24$%$ which increases with increasing Coulomb energy and diminishes with increasing isospin (N$-$Z) values exhibiting the fact that the coloumb forces are the main driving force in the central depletion in superheavy systems.



قيم البحث

اقرأ أيضاً

In this paper, we analyze the structural properties of $Z=132$ and $Z=138$ superheavy nuclei within the ambit of axially deformed relativistic mean-field framework with NL$3^{*}$ parametrization and calculate the total binding energies, radii, quadru pole deformation parameter, separation energies, density distributions. We also investigate the phenomenon of shape coexistence by performing the calculations for prolate, oblate and spherical configurations. For clear presentation of nucleon distributions, the two-dimensional contour representation of individual nucleon density and total matter density has been made. Further, a competition between possible decay modes such as $alpha$-decay, $beta$-decay and spontaneous fission of the isotopic chain of superheavy nuclei with $Z=132$ within the range 312 $le$ A $le$ 392 and 318 $le$ A $le$ 398 for $Z=138$ is systematically analyzed within self-consistent relativistic mean field model. From our analysis, we inferred that the $alpha$-decay and spontaneous fission are the principal modes of decay in majority of the isotopes of superheavy nuclei under investigation apart from $beta$ decay as dominant mode of decay in $^{318-322}138$ isotopes.
In this manuscript, we analyze the structural properties of $Z=119$ superheavy nuclei in the mass range of 284 $le$ A $le$ 375 within the framework of deformed relativistic mean field theory (RMF) and calculate the binding energy, radii, quadrupole d eformation parameter, separation energies and density profile. Further, a competition between possible decay modes such as $alpha-$decay, $beta-$decay and spontaneous fission (SF) of the isotopic chain of $Z=119$ superheavy nuclei under study is systematically analyzed within self-consistent relativistic mean field model. Moreover, our analysis confirmed that $alpha-$decay is restricted within the mass range 284 $leq$ A $leq$ 296 and thus being the dominant decay channel in this mass range. However, for the mass range 297 $leq$ A $leq$ 375 the nuclei are unable to survive fission and hence SF is the principal mode of decay for these isotopes. There is no possibility of $beta-$decay for the considered isotopic chain. In addition, we forecasted the mode of decay $^{284-296}$119 as one $alpha$ chain from $^{284}$119 and $^{296}$119, two consistent $alpha$ chains from $^{285}$119 and $^{295}$119, three consistent $alpha$ chains from $^{286}$119 and $^{294}$119, four consistent alpha chains from $^{287}$119, six consistent alpha chains from $^{288-293}$119. Also from our analysis we inferred that for the isotopes $^{264-266,269}$Bh both $alpha$ decay and SF are equally competent and can decay via either of these two modes. Thus, such studies can be of great significance to the experimentalists in very near future for synthesizing $Z=119$ superheavy nuclei.
The fusion dynamics on the formation of superheavy nuclei is investigated thoroughly within the dinuclear system model. The Monte Carlo approach is implemented into the nucleon transfer process for including all possible orientations, at which the di nuclear system is assumed to be formed at the touching configuration of dinuclear fragments. The production cross sections of superheavy nuclei Cn, Fl, Lv, Ts and Og are calculated and compared with the available data from Dubna. The evaporation residue excitation functions in the channels of pure neutrons and charged particles are analyzed systematically. The combinations with $^{44}$Sc, $^{48,50}$Ti, $^{49,51}$V, $^{52,54}$Cr, $^{58,62}$Fe and $^{62,64}$Ni bombarding the actinide nuclides $^{238}$U, $^{244}$Pu, $^{248}$Cm, $^{247,249}$Bk, $^{249,251}$Cf, $^{252}$Es and $^{243}$Am are calculated for producing the superheavy elements with Z=119-122. It is found that the production cross sections sensitively depend on the neutron richness of reaction system. The structure of evaporation residue excitation function is related to the neutron separation energy and fission barrier of compound nucleus.
The production cross sections of heaviest isotopes of superheavy nuclei with charge numbers 112--118 are predicted in the $xn$--, $pxn$--, and $alpha xn$--evaporation channels of the $^{48}$Ca-induced complete fusion reactions for future experiments. The estimates of synthesis capabilities are based on a uniform and consistent set of input nuclear data. Nuclear masses, deformations, shell corrections, fission barriers, and decay energies are calculated within the macroscopic-microscopic approach for even-even, odd-Z, and odd-N nuclei. For odd systems, the blocking procedure is used. To find, the ground states via minimization and saddle points using Immersion Water flow technique, multidimensional deformation spaces, containing non-axially are used. As shown, current calculations based on a new set of mass and barriers, agree very well with experimentally known cross-sections, especially in the $3n$--evaporation channel. The dependencies of these predictions on the mass/fission barriers tables and fusion models are discussed. A way is shown to produce directly unknown superheavy isotopes in the $1n$-- or $2n$--evaporation channels. The synthesis of new superheavy isotopes unattainable in reactions with emission of neutrons is proposed in the promising channels with emission of protons ($sigma_{pxn} simeq 10-200$ fb) and alphas ($sigma_{alpha xn} simeq 5-500$ fb).
A fully systematic study of even and odd isotopes (281 $leq$ A $leq$ 380) of Z = 121 superheavy nuclei is presented in theoretical frameworks of Relativistic mean-field plus state dependent BCS approach and Macroscopic-Microscopic approach with triax ially deformed Nilson Strutinsky prescription. The ground state properties namely shell correction, binding energy, two- and one- proton and neutron separation energy, shape, deformation, density profile and the radius are estimated that show strong evidence for magicity in N = 164, 228. Central depletion in the charge density due to large repulsive Coulomb field indicating bubble-like structure is reported. A comprehensive analysis of the possible decay modes specifically $alpha$-decay and spontaneous fission (SF) is presented and the probable $alpha$-decay chains are evaluated. Results are compared with FRDM calculations and the available experimental data which show excellent agreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا