ﻻ يوجد ملخص باللغة العربية
Ground states of interacting QFTs are non-gaussian states, i.e. their connected n-point correlation functions do not vanish for n>2, in contrast to the free QFT case. We show that when the ground state of an interacting QFT evolves under a free massive QFT for a long time (a scenario that can be realised by a Quantum Quench), the connected correlation functions decay and all local physical observables equilibrate to values that are given by a gaussian density matrix that keeps memory only of the two-point initial correlation function. The argument hinges upon the fundamental physical principle of cluster decomposition, which is valid for the ground state of a general QFT. An analogous result was already known to be valid in the case of d=1 spatial dimensions, where it is a special case of the so-called Generalised Gibbs Ensemble (GGE) hypothesis, and we now generalise it to higher dimensions. Moreover in the case of massless free evolution, despite the fact that the evolution may not lead to equilibration but unbounded increase of correlations with time instead, the GGE gives correctly the leading order asymptotic behaviour of correlation functions in the thermodynamic and large time limit. The demonstration is performed in the context of bosonic relativistic QFT, but the arguments apply more generally.
In the majority of the analytical verifications of the conjecture that the Generalised Gibbs Ensemble describes the large time asymptotics of local observables in quantum quench problems, both the post-quench and the pre-quench Hamiltonians are essen
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates
We present a non-equilibrium Greens functional approach to study the dynamics following a quench in weakly interacting Bose Hubbard model (BHM). The technique is based on the self-consistent solution of a set of equations which represents a particula
Finding pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace is necessarily a challenging task. Nevertheless, such purifications play the key role in characterizing quantum information-theo
We determine both analytically and numerically the entanglement between chiral degrees of freedom in the ground state of massive perturbations of 1+1 dimensional conformal field theories quantised on a cylinder. Analytic predictions are obtained from