ﻻ يوجد ملخص باللغة العربية
We numerically study the non-local transport signature in Weyl semimetal as a test for interconnectedness of the surface states, using a recursive Greens function method. We drive a current using two leads connected on the same surface (top surface) and apply a magnetic field throughout the system, perpendicular to the surface. We find that this results in a current flowing on the other surface in the direction opposite to the direction of the current on the top surface and we comment on the viability of observing such an effect in experiment. The recursive Greens function method we employ is exact and provides us with the Greens functions of the two surfaces as well as their connecting elements, which can be applied also for other numerical simulations where the effect of surface to surface transport is important.
We analyze the structure of the surface states and Fermi arcs of Weyl semimetals as a function of the boundary conditions parameterizing the Hamiltonian self-adjoint extensions of a minimal model with two Weyl points. These boundary conditions determ
Weyl semimetals are characterized by unconventional electromagnetic response. We present analytical expressions for all components of the frequency- and wave-vector-dependent charge-spin linear-response tensor of Weyl fermions. The spin-momentum lock
The study of charge-density wave (CDW) distortions in Weyl semimetals has recently returned to the forefront, inspired by experimental interest in materials such as (TaSe4)2I. However, the interplay between collective phonon excitations and charge tr
We study non-Hermitian higher-order Weyl semimetals (NHHOWSMs) possessing real spectra and having inversion $mathcal{I}$ ($mathcal{I}$-NHHOWSM) or time-reversal symmetry $mathcal{T}$ ($mathcal{T}$-NHHOWSM). When the reality of bulk spectra is lost, t
Within a Kubo formalism, we study dc transport and ac optical properties of 3D Dirac and Weyl semimetals. Emphasis is placed on the approach to charge neutrality and on the differences between Dirac and Weyl materials. At charge neutrality, the zero-