ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical and kinematic analysis of CN-strong Metal-poor Field Stars in LAMOST DR3

129   0   0.0 ( 0 )
 نشر من قبل Baitian Tang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The large amount of chemical and kinematic information available in large spectroscopic surveys have inspired the search for chemically peculiar stars in the field. Though these metal-poor field stars ([Fe/H$]<-1$) are commonly enriched in nitrogen, their detailed spatial, kinematic, and chemical distributions suggest that various groups may exist, and thus their origin is still a mystery. To study these stars statistically, we increase the sample size by identifying new CN-strong stars with LAMOST DR3 for the first time. We use CN-CH bands around 4000 AA~to find CN-strong stars, and further separate them into CH-normal stars (44) and CH-strong (or CH) stars (35). The chemical abundances from our data-driven software and APOGEE DR 14 suggest that most CH-normal stars are N-rich, and it cannot be explained by only internal mixing process. The kinematics of our CH-normal stars indicate a substantial fraction of these stars are retrograding, pointing to an extragalactic origin. The chemistry and kinematics of CH-normal stars imply that they may be GC-dissolved stars, or accreted halo stars, or both.



قيم البحث

اقرأ أيضاً

Metal-poor stars play an import role in the understanding of Galaxy formation and evolution. Evidence of the early mergers that built up the Galaxy might remain in the distributions of abundances, kinematics, and orbital parameters of the stars. In t his work, we report on preliminary results of an on-going chemo-kinematic analysis of a sample of metal-poor ([Fe/H] $leq$ -1.0) stars observed by the GALAH spectroscopic survey. We explored the chemical and orbital data with unsupervised machine learning (hierarchical clustering, k-means cluster analysis and correlation matrices). Our final goal is to find an optimal way to separate different Galactic stellar populations and stellar groups originating from merging events, such as Gaia-Enceladus and Sequoia.
Interesting chemically peculiar field stars may reflect their stellar evolution history and their possible origin in a different environment from where they are found now, which is one of the most important research fields in Galactic archaeology. To explore this further, we have used the CN-CH bands around 4000 A to identify N-rich metal-poor field stars in LAMOST DR3. Here we expand our N-rich metal-poor field star sample to ~100 stars in LAMOST DR5, where 53 of them are newly found in this work. We investigate light elements of the common stars between our sample and APOGEE DR14. While Mg, Al, and Si abundances generally agree with the hypothesis that N-rich metal-poor field stars come from enriched populations in globular clusters, it is still inconclusive for C, N, and O. After integrating the orbits of our N-rich field stars and a control sample of normal metal-poor field stars, we find that N-rich field stars have different orbital parameter distributions compared to the control sample, specifically, apocentric distances, maximum vertical amplitude (Zmax), orbital energy, and z direction angular momentum (Lz). The orbital parameters of N-rich field stars indicate that most of them are inner-halo stars. The kinematics of N-rich field stars support their possible GC origin. The spatial and velocity distributions of our bona fide N-rich field star sample are important observational evidence to constrain simulations of the origin of these interesting objects.
We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan~II telescope. We performed detailed abundance analysis f or eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capture elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars, and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-process may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.
146 - Julie K. Hollek 2011
We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrog raph snapshot spectra (R~15,000) and corresponding high-resolution (R~35,000) Magellan MIKE spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H]<-3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]<-3. We also find four neutron-capture enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H]<-3.0) of the brightest stars included in CASH and are used to calibrate a newly-developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.
We present 947 radial velocities of RR Lyrae variable stars in four fields located toward the Galactic bulge, observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay (BRAVA-RR). We show that these RR Lyrae stars exhibit hot kin ematics and null or negligible rotation and are therefore members of a separate population from the bar/pseudobulge that currently dominates the mass and luminosity of the inner Galaxy. Our RR Lyrae stars predate these structures, and have metallicities, kinematics, and spatial distribution that are consistent with a classical bulge, although we cannot yet completely rule out the possibility that they are the metal-poor tail of a more metal rich ([Fe/H] ~ -1 dex) halo-bulge population. The complete catalog of radial velocities for the BRAVA-RR stars is also published electronically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا