ﻻ يوجد ملخص باللغة العربية
Home automation platforms provide a new level of convenience by enabling consumers to automate various aspects of physical objects in their homes. While the convenience is beneficial, security flaws in the platforms or integrated third-party products can have serious consequences for the integrity of a users physical environment. In this paper we perform a systematic security evaluation of two popular smart home platforms, Googles Nest platform and Philips Hue, that implement home automation routines (i.e., trigger-action programs involving apps and devices) via manipulation of state variables in a centralized data store. Our semi-automated analysis examines, among other things, platform access control enforcement, the rigor of non-system enforcement procedures, and the potential for misuse of routines. This analysis results in ten key findings with serious security implications. For instance, we demonstrate the potential for the misuse of smart home routines in the Nest platform to perform a lateral privilege escalation, illustrate how Nests product review system is ineffective at preventing multiple stages of this attack that it examines, and demonstrate how emerging platforms may fail to provide even bare-minimum security by allowing apps to arbitrarily add/remove other apps from the users smart home. Our findings draw attention to the unique security challenges of platforms that execute routines via centralized data stores and highlight the importance of enforcing security by design in emerging home automation platforms.
Security researchers have recently discovered significant security and safety issues related to home automation and developed approaches to address them. Such approaches often face design and evaluation challenges which arise from their restricted pe
Pattern lock is a general technique used to realize identity authentication and access authorization on mobile terminal devices such as Android platform devices, but it is vulnerable to the attack proposed by recent researches that exploit informatio
Although there are over 1,600,000 third-party Android apps in the Google Play Store, little has been conclusively shown about how their individual (and collective) permission usage has evolved over time. Recently, Android 6 overhauled the way permiss
We present VStore, a data store for supporting fast, resource-efficient analytics over large archival videos. VStore manages video ingestion, storage, retrieval, and consumption. It controls video formats along the video data path. It is challenged b
Smart speakers and voice-based virtual assistants are core components for the success of the IoT paradigm. Unfortunately, they are vulnerable to various privacy threats exploiting machine learning to analyze the generated encrypted traffic. To cope w