ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Adversarial Learning on Google Home devices

83   0   0.0 ( 0 )
 نشر من قبل Davide Caputo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Smart speakers and voice-based virtual assistants are core components for the success of the IoT paradigm. Unfortunately, they are vulnerable to various privacy threats exploiting machine learning to analyze the generated encrypted traffic. To cope with that, deep adversarial learning approaches can be used to build black-box countermeasures altering the network traffic (e.g., via packet padding) and its statistical information. This letter showcases the inadequacy of such countermeasures against machine learning attacks with a dedicated experimental campaign on a real network dataset. Results indicate the need for a major re-engineering to guarantee the suitable protection of commercially available smart speakers.



قيم البحث

اقرأ أيضاً

Smart home IoT systems often rely on cloud-based servers for communication between components. Although there exists a body of work on IoT security, most of it focuses on securing clients (i.e., IoT devices). However, cloud servers can also be compro mised. Existing approaches do not typically protect smart home systems against compromised cloud servers. This paper presents FIDELIUS: a runtime system for secure cloud-based storage and communication even in the presence of compromised servers. FIDELIUSs design is tailored for smart home systems that have intermittent Internet access. In particular, it supports local control of smart home devices in the event that communication with the cloud is lost, and provides a consistency model using transactions to mitigate inconsistencies that can arise due to network partitions. We have implemented FIDELIUS, developed a smart home benchmark that uses FIDELIUS, and measured FIDELIUSs performance and power consumption. Our experiments show that compared to the commercial Particle.io framework, FIDELIUS reduces more than 50% of the data communication time and increases battery life by 2X. Compared to PyORAM, an alternative (ORAM-based) oblivious storage implementation, FIDELIUS has 4-7X faster access times with 25-43X less data transferred.
Currently, Android malware detection is mostly performed on server side against the increasing number of malware. Powerful computing resource provides more exhaustive protection for app markets than maintaining detection by a single user. However, ap art from the applications provided by the official market, apps from unofficial markets and third-party resources are always causing serious security threats to end-users. Meanwhile, it is a time-consuming task if the app is downloaded first and then uploaded to the server side for detection, because the network transmission has a lot of overhead. In addition, the uploading process also suffers from the security threats of attackers. Consequently, a last line of defense on mobile devices is necessary and much-needed. In this paper, we propose an effective Android malware detection system, MobiTive, leveraging customized deep neural networks to provide a real-time and responsive detection environment on mobile devices. MobiTive is a preinstalled solution rather than an app scanning and monitoring engine using after installation, which is more practical and secure. Original deep learning models cannot be directly deployed and executed on mobile devices due to various performance limitations, such as computation power, memory size, and energy. Therefore, we evaluate and investigate the following key points:(1) the performance of different feature extraction methods based on source code or binary code;(2) the performance of different feature type selections for deep learning on mobile devices;(3) the detection accuracy of different deep neural networks on mobile devices;(4) the real-time detection performance and accuracy on different mobile devices;(5) the potential based on the evolution trend of mobile devices specifications; and finally we further propose a practical solution (MobiTive) to detect Android malware on mobile devices.
Numerous previous works have studied deep learning algorithms applied in the context of side-channel attacks, which demonstrated the ability to perform successful key recoveries. These studies show that modern cryptographic devices are increasingly t hreatened by side-channel attacks with the help of deep learning. However, the existing countermeasures are designed to resist classical side-channel attacks, and cannot protect cryptographic devices from deep learning based side-channel attacks. Thus, there arises a strong need for countermeasures against deep learning based side-channel attacks. Although deep learning has the high potential in solving complex problems, it is vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrectly. In this paper, we propose a kind of novel countermeasures based on adversarial attacks that is specifically designed against deep learning based side-channel attacks. We estimate several models commonly used in deep learning based side-channel attacks to evaluate the proposed countermeasures. It shows that our approach can effectively protect cryptographic devices from deep learning based side-channel attacks in practice. In addition, our experiments show that the new countermeasures can also resist classical side-channel attacks.
246 - Wei Zhou , Yan Jia , Yao Yao 2018
A smart home connects tens of home devices to the Internet, where an IoT cloud runs various home automation applications. While bringing unprecedented convenience and accessibility, it also introduces various security hazards to users. Prior research studied smart home security from several aspects. However, we found that the complexity of the interactions among the participating entities (i.e., devices, IoT clouds, and mobile apps) has not yet been systematically investigated. In this work, we conducted an in-depth analysis of five widely-used smart home platforms. Combining firmware analysis, network traffic interception, and blackbox testing, we reverse-engineered the details of the interactions among the participating entities. Based on the details, we inferred three legitimate state transition diagrams for the three entities, respectively. Using these state machines as a reference model, we identified a set of unexpected state transitions. To confirm and trigger the unexpected state transitions, we implemented a set of phantom devices to mimic a real device. By instructing the phantom devices to intervene in the normal entity-entity interactions, we have discovered several new vulnerabilities and a spectrum of attacks against real-world smart home platforms.
The vulnerability of deep neural networks (DNNs) to adversarial examples is well documented. Under the strong white-box threat model, where attackers have full access to DNN internals, recent work has produced continual advancements in defenses, ofte n followed by more powerful attacks that break them. Meanwhile, research on the more realistic black-box threat model has focused almost entirely on reducing the query-cost of attacks, making them increasingly practical for ML models already deployed today. This paper proposes and evaluates Blacklight, a new defense against black-box adversarial attacks. Blacklight targets a key property of black-box attacks: to compute adversarial examples, they produce sequences of highly similar images while trying to minimize the distance from some initial benign input. To detect an attack, Blacklight computes for each query image a compact set of one-way hash values that form a probabilistic fingerprint. Variants of an image produce nearly identical fingerprints, and fingerprint generation is robust against manipulation. We evaluate Blacklight on 5 state-of-the-art black-box attacks, across a variety of models and classification tasks. While the most efficient attacks take thousands or tens of thousands of queries to complete, Blacklight identifies them all, often after only a handful of queries. Blacklight is also robust against several powerful countermeasures, including an optimal black-box attack that approximates white-box attacks in efficiency. Finally, Blacklight significantly outperforms the only known alternative in both detection coverage of attack queries and resistance against persistent attackers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا