ترغب بنشر مسار تعليمي؟ اضغط هنا

Inclined Massive Planets in a Protoplanetary Disc: Gap Opening, Disc Breaking, and Observational Signatures

104   0   0.0 ( 0 )
 نشر من قبل Zhaohuan Zhu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Zhaohuan Zhu




اسأل ChatGPT حول البحث

We carry out three-dimensional hydrodynamical simulations to study planet-disc interactions for inclined high mass planets, focusing on the discs secular evolution induced by the planet. We find that, when the planet is massive enough and the induced gap is deep enough, the disc inside the planets orbit breaks from the outer disc. The inner and outer discs precess around the systems total angular momentum vector independently at different precession rates, which causes significant disc misalignment. We derive the analytical formulae, which are also verified numerically, for: 1) the relationship between the planet mass and the depth/width of the induced gap, 2) the migration and inclination damping rates for massive inclined planets, and 3) the condition under which the inner and outer discs can break and undergo differential precession. Then, we carry out Monte-Carlo radiative transfer calculations for the simulated broken discs. Both disc shadowing in near-IR images and gas kinematics probed by molecular lines (e.g. from ALMA) can reveal the misaligned inner disc. The relationship between the rotation rate of the disc shadow and the precession rate of the inner disc is also provided. Using our disc breaking condition, we conclude that the disc shadowing due to misaligned discs should be accompanied by deep gaseous gaps (e.g. in Pre/Transitional discs). This scenario naturally explains both the disc shadowing and deep gaps in several systems (e.g. HD 100453, DoAr 44, AA Tau, HD 143006) and these systems should be the prime targets for searching young massive planets ($>M_J$) in discs.



قيم البحث

اقرأ أيضاً

Circumstellar discs may become warped or broken into distinct planes if there is a stellar or planetary companion with an orbit that is misaligned with respect to the disc. There is mounting observational evidence for protoplanetary discs with misali gned inner discs and warps that may be caused by such interactions with a previously undetected companion, giving us a tantalising indication of possible planets forming there. Hydrodynamical and radiative transfer models indicate that the temperature varies azimuthally in warped discs due to the variable angle at which the disc surface faces the star and this impacts the disc chemistry. We perform chemical modelling based on a hydrodynamical model of a protoplanetary disc with an embedded planet orbiting at a 12$^{circ}$ inclination to the disc. Even for this small misalignment, abundances of species including CO and HCO$^+$ vary azimuthally and this results in detectable azimuthal variations in submillimetre line emission. Azimuthal variations in line emission may therefore indicate the presence of an unseen embedded companion. Nonaxisymmetric chemical abundances should be considered when interpreting molecular line maps of warped or shadowed protoplanetary discs.
Recent observations of several protoplanetary discs have found evidence of departures from flat, circular motion in the inner regions of the disc. One possible explanation for these observations is a disc warp, which could be induced by a planet on a misaligned orbit. We present three-dimensional numerical simulations of the tidal interaction between a protoplanetary disc and a misaligned planet. For low planet masses we show that our simulations accurately model the evolution of inclined planet orbit (up to moderate inclinations). For a planet massive enough to carve a gap, the disc is separated into two components and the gas interior and exterior to the planet orbit evolve separately, forming an inner and outer disc. Due to the inclination of the planet, a warp develops across the planet orbit such that there is a relative tilt and twist between these discs. We show that when other parameters are held constant, the relative inclination that develops between the inner and outer disc depends on the outer radius of the total disc modelled. For a given disc mass, our results suggest that the observational relevance of the warp depends more strongly on the mass of the planet rather than the inclination of the orbit.
Recent ALMA observations revealed concentric annular structures in several young class-II objects. In an attempt to produce the rings and gaps in some of these systems, they have been modeled numerically with a single embedded planet assuming a local ly isothermal equation of state. This is often justified by observations targeting the irradiation-dominated outer regions of disks (approximately 100 au). We test this assumption by conducting hydrodynamics simulations of embedded planets in thin locally isothermal and radiative disks that mimic the systems HD 163296 and AS 209 in order to examine the effect of including the energy equation in a seemingly locally isothermal environment as far as planet-disk interaction is concerned. We find that modeling such disks with an ideal equation of state makes a difference in terms of the number of produced rings and the spiral arm contrast in the disk. Locally isothermal disks produce sharper annular or azimuthal features and overestimate a single planets gap-opening capabilities by producing multiple gaps. In contrast, planets in radiative disks carve a single gap for typical disk parameters. Consequently, for accurate modeling of planets with semimajor axes up to about 100 au, radiative effects should be taken into account even in seemingly locally isothermal disks. In addition, for the case of AS 209, we find that the primary gap is significantly different between locally isothermal and radiative models. Our results suggest that multiple planets are required to explain the ring-rich structures in such systems.
High-resolution imaging of protoplanetary disks has unveiled a rich diversity of spiral structure, some of which may arise from disk-planet interaction. Using 3D hydrodynamics with $beta$-cooling to a vertically-stratified background, as well as radi ative-transfer modeling, we investigate the temperature rise in planet-driven spirals. In rapidly cooling disks, the temperature rise is dominated by a contribution from stellar irradiation, 0.3-3% inside the planet radius but always <0.5% outside. When cooling time equals or exceeds dynamical time, however, this is overwhelmed by hydrodynamic PdV work, which introduces a 10-20% perturbation within a factor of 2 from the planets orbital radius. We devise an empirical fit of the spiral amplitude $Delta (T)$ to take into account both effects. Where cooling is slow, we find also that temperature perturbations from buoyancy spirals -- a strictly 3D, non-isothermal phenomenon -- become nearly as strong as those from Lindblad spirals, which are amenable to 2D and isothermal studies. Our findings may help explain observed thermal features in disks like TW Hydrae and CQ Tauri, and underscore that 3D effects have a qualitatively important effect on disk structure.
We study gap formation in gaseous protoplanetary discs by a Jupiter mass planet. The planets orbit is circular and inclined relative to the midplane of the disc. We use the impulse approximation to estimate the gravitational tidal torque between the planet and the disc, and infer the gap profile. For low-mass discs, we provide a criterion for gap opening when the orbital inclination is $leq 30^{circ}$. Using the FARGO3D code, we simulate the disc response to an inclined massive planet. The dependence of the depth and width of the gap obtained in the simulations on the inclination of the planet is broadly consistent with the scaling laws derived in the impulse approximation. Although we mainly focus on planets kept on fixed orbits, the formalism permits to infer the temporal evolution of the gap profile in cases where the inclination of the planet changes with time. This study may be useful to understand the migration of massive planets on inclined orbit, because the strength of the interaction with the disc depends on whether a gap is opened or not.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا