ﻻ يوجد ملخص باللغة العربية
Recent observations of several protoplanetary discs have found evidence of departures from flat, circular motion in the inner regions of the disc. One possible explanation for these observations is a disc warp, which could be induced by a planet on a misaligned orbit. We present three-dimensional numerical simulations of the tidal interaction between a protoplanetary disc and a misaligned planet. For low planet masses we show that our simulations accurately model the evolution of inclined planet orbit (up to moderate inclinations). For a planet massive enough to carve a gap, the disc is separated into two components and the gas interior and exterior to the planet orbit evolve separately, forming an inner and outer disc. Due to the inclination of the planet, a warp develops across the planet orbit such that there is a relative tilt and twist between these discs. We show that when other parameters are held constant, the relative inclination that develops between the inner and outer disc depends on the outer radius of the total disc modelled. For a given disc mass, our results suggest that the observational relevance of the warp depends more strongly on the mass of the planet rather than the inclination of the orbit.
We study orbital inclination changes associated with the precession of a disc-planet system that occurs through gravitational interaction with a binary companion on an inclined orbit. We investigate whether this scenario can account for giant planets
We carry out three-dimensional hydrodynamical simulations to study planet-disc interactions for inclined high mass planets, focusing on the discs secular evolution induced by the planet. We find that, when the planet is massive enough and the induced
Dark rings with bright rims are the indirect signposts of planets embedded in protoplanetary discs. In a recent first, an azimuthally elongated AU-scale blob, possibly a planet, was resolved with ALMA in TW Hya. The blob is at the edge of a cliff-lik
AA Tau is the archetype for a class of stars with a peculiar periodic photometric variability thought to be related to a warped inner disk structure with a nearly edge-on viewing geometry. We present high resolution ($sim$0.2) ALMA observations of th
Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planets orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A numb