ﻻ يوجد ملخص باللغة العربية
Micro Aerial Vehicles (MAVs) rely on onboard attitude and position sensors for autonomous flight. Due to their size, weight, and power (SWaP) constraints, most modern MAVs use miniaturized inertial measurement units (IMUs) to provide attitude feedback, which is critical for flight stabilization and control. However, recent adversarial attack studies have demonstrated that many commonly used IMUs are vulnerable to attacks exploiting their physical characteristics. Conventional redundancy-based approaches are not effective against such attacks because redundant IMUs have the same or similar physical vulnerabilities. In this paper, we present a novel fault-tolerant solution for IMU compromised scenarios, using separate position and heading information to restore the failed attitude states. Rather than adding more IMU alternatives for recovery, the proposed method is intended to minimize any modifications to the existing system and control program. Thus, it is particularly useful for vehicles that have tight SWaP constraints while requiring simultaneous high performance and safety demands. To execute the recovery logic properly, a robust estimator was designed for fine-grained detection and isolation of the faulty sensors. The effectiveness of the proposed approach was validated on a quadcopter MAV through both simulation and experimental flight tests.
In this paper we propose a novel accurate method for dead-reckoning of wheeled vehicles based only on an Inertial Measurement Unit (IMU). In the context of intelligent vehicles, robust and accurate dead-reckoning based on the IMU may prove useful to
Visual navigation has been widely used for state estimation of micro aerial vehicles (MAVs). For stable visual navigation, MAVs should generate perception-aware paths which guarantee enough visible landmarks. Many previous works on perception-aware p
This paper proposes a learning method for denoising gyroscopes of Inertial Measurement Units (IMUs) using ground truth data, and estimating in real time the orientation (attitude) of a robot in dead reckoning. The obtained algorithm outperforms the s
Collision detection and recovery for aerial robots remain a challenge because of the limited space for sensors and local stability of the flight controller. We introduce a novel collision-resilient quadrotor that features a compliant arm design to en
This paper presents a design of oscillation damping control for the cable-Suspended Aerial Manipulator (SAM). The SAM is modeled as a double pendulum, and it can generate a body wrench as a control action. The main challenge is the fact that there is