ﻻ يوجد ملخص باللغة العربية
This paper investigates the adversarial Bandits with Knapsack (BwK) online learning problem, where a player repeatedly chooses to perform an action, pays the corresponding cost, and receives a reward associated with the action. The player is constrained by the maximum budget $B$ that can be spent to perform actions, and the rewards and the costs of the actions are assigned by an adversary. This problem has only been studied in the restricted setting where the reward of an action is greater than the cost of the action, while we provide a solution in the general setting. Namely, we propose EXP3.BwK, a novel algorithm that achieves order optimal regret. We also propose EXP3++.BwK, which is order optimal in the adversarial BwK setup, and incurs an almost optimal expected regret with an additional factor of $log(B)$ in the stochastic BwK setup. Finally, we investigate the case of having large costs for the actions (i.e., they are comparable to the budget size $B$), and show that for the adversarial setting, achievable regret bounds can be significantly worse, compared to the case of having costs bounded by a constant, which is a common assumption within the BwK literature.
We study adversarial scaling, a multi-armed bandit model where rewards have a stochastic and an adversarial component. Our model captures display advertising where the click-through-rate can be decomposed to a (fixed across time) arm-quality componen
Consider a player that in each round $t$ out of $T$ rounds chooses an action and observes the incurred cost after a delay of $d_{t}$ rounds. The cost functions and the delay sequence are chosen by an adversary. We show that even if the players algori
We derive improved regret bounds for the Tsallis-INF algorithm of Zimmert and Seldin (2021). We show that in adversarial regimes with a $(Delta,C,T)$ self-bounding constraint the algorithm achieves $mathcal{O}left(left(sum_{i eq i^*} frac{1}{Delta_i}
We propose an algorithm for stochastic and adversarial multiarmed bandits with switching costs, where the algorithm pays a price $lambda$ every time it switches the arm being played. Our algorithm is based on adaptation of the Tsallis-INF algorithm o
We introduce a new model of stochastic bandits with adversarial corruptions which aims to capture settings where most of the input follows a stochastic pattern but some fraction of it can be adversarially changed to trick the algorithm, e.g., click f