ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Analysis of the Tsallis-INF Algorithm in Stochastically Constrained Adversarial Bandits and Stochastic Bandits with Adversarial Corruptions

78   0   0.0 ( 0 )
 نشر من قبل Saeed Masoudian
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive improved regret bounds for the Tsallis-INF algorithm of Zimmert and Seldin (2021). We show that in adversarial regimes with a $(Delta,C,T)$ self-bounding constraint the algorithm achieves $mathcal{O}left(left(sum_{i eq i^*} frac{1}{Delta_i}right)log_+left(frac{(K-1)T}{left(sum_{i eq i^*} frac{1}{Delta_i}right)^2}right)+sqrt{Cleft(sum_{i eq i^*}frac{1}{Delta_i}right)log_+left(frac{(K-1)T}{Csum_{i eq i^*}frac{1}{Delta_i}}right)}right)$ regret bound, where $T$ is the time horizon, $K$ is the number of arms, $Delta_i$ are the suboptimality gaps, $i^*$ is the best arm, $C$ is the corruption magnitude, and $log_+(x) = maxleft(1,log xright)$. The regime includes stochastic bandits, stochastically constrained adversarial bandits, and stochastic bandits with adversarial corruptions as special cases. Additionally, we provide a general analysis, which allows to achieve the same kind of improvement for generalizations of Tsallis-INF to other settings beyond multiarmed bandits.



قيم البحث

اقرأ أيضاً

We derive an algorithm that achieves the optimal (within constants) pseudo-regret in both adversarial and stochastic multi-armed bandits without prior knowledge of the regime and time horizon. The algorithm is based on online mirror descent (OMD) wit h Tsallis entropy regularization with power $alpha=1/2$ and reduced-variance loss estimators. More generally, we define an adversarial regime with a self-bounding constraint, which includes stochastic regime, stochastically constrained adversarial regime (Wei and Luo), and stochastic regime with adversarial corruptions (Lykouris et al.) as special cases, and show that the algorithm achieves logarithmic regret guarantee in this regime and all of its special cases simultaneously with the adversarial regret guarantee.} The algorithm also achieves adversarial and stochastic optimality in the utility-based dueling bandit setting. We provide empirical evaluation of the algorithm demonstrating that it significantly outperforms UCB1 and EXP3 in stochastic environments. We also provide examples of adversarial environments, where UCB1 and Thompson Sampling exhibit almost linear regret, whereas our algorithm suffers only logarithmic regret. To the best of our knowledge, this is the first example demonstrating vulnerability of Thompson Sampling in adversarial environments. Last, but not least, we present a general stochastic analysis and a general adversarial analysis of OMD algorithms with Tsallis entropy regularization for $alphain[0,1]$ and explain the reason why $alpha=1/2$ works best.
We introduce a new model of stochastic bandits with adversarial corruptions which aims to capture settings where most of the input follows a stochastic pattern but some fraction of it can be adversarially changed to trick the algorithm, e.g., click f raud, fake reviews and email spam. The goal of this model is to encourage the design of bandit algorithms that (i) work well in mixed adversarial and stochastic models, and (ii) whose performance deteriorates gracefully as we move from fully stochastic to fully adversarial models. In our model, the rewards for all arms are initially drawn from a distribution and are then altered by an adaptive adversary. We provide a simple algorithm whose performance gracefully degrades with the total corruption the adversary injected in the data, measured by the sum across rounds of the biggest alteration the adversary made in the data in that round; this total corruption is denoted by $C$. Our algorithm provides a guarantee that retains the optimal guarantee (up to a logarithmic term) if the input is stochastic and whose performance degrades linearly to the amount of corruption $C$, while crucially being agnostic to it. We also provide a lower bound showing that this linear degradation is necessary if the algorithm achieves optimal performance in the stochastic setting (the lower bound works even for a known amount of corruption, a special case in which our algorithm achieves optimal performance without the extra logarithm).
We propose an algorithm for stochastic and adversarial multiarmed bandits with switching costs, where the algorithm pays a price $lambda$ every time it switches the arm being played. Our algorithm is based on adaptation of the Tsallis-INF algorithm o f Zimmert and Seldin (2021) and requires no prior knowledge of the regime or time horizon. In the oblivious adversarial setting it achieves the minimax optimal regret bound of $Obig((lambda K)^{1/3}T^{2/3} + sqrt{KT}big)$, where $T$ is the time horizon and $K$ is the number of arms. In the stochastically constrained adversarial regime, which includes the stochastic regime as a special case, it achieves a regret bound of $Oleft(big((lambda K)^{2/3} T^{1/3} + ln Tbig)sum_{i eq i^*} Delta_i^{-1}right)$, where $Delta_i$ are the suboptimality gaps and $i^*$ is a unique optimal arm. In the special case of $lambda = 0$ (no switching costs), both bounds are minimax optimal within constants. We also explore variants of the problem, where switching cost is allowed to change over time. We provide experimental evaluation showing competitiveness of our algorithm with the relevant baselines in the stochastic, stochastically constrained adversarial, and adversarial regimes with fixed switching cost.
77 - Junyan Liu , Shuai Li , Dapeng Li 2021
We study the problem of stochastic bandits with adversarial corruptions in the cooperative multi-agent setting, where $V$ agents interact with a common $K$-armed bandit problem, and each pair of agents can communicate with each other to expedite the learning process. In the problem, the rewards are independently sampled from distributions across all agents and rounds, but they may be corrupted by an adversary. Our goal is to minimize both the overall regret and communication cost across all agents. We first show that an additive term of corruption is unavoidable for any algorithm in this problem. Then, we propose a new algorithm that is agnostic to the level of corruption. Our algorithm not only achieves near-optimal regret in the stochastic setting, but also obtains a regret with an additive term of corruption in the corrupted setting, while maintaining efficient communication. The algorithm is also applicable for the single-agent corruption problem, and achieves a high probability regret that removes the multiplicative dependence of $K$ on corruption level. Our result of the single-agent case resolves an open question from Gupta et al. [2019].
We propose a new algorithm for adversarial multi-armed bandits with unrestricted delays. The algorithm is based on a novel hybrid regularizer applied in the Follow the Regularized Leader (FTRL) framework. It achieves $mathcal{O}(sqrt{kn}+sqrt{Dlog(k) })$ regret guarantee, where $k$ is the number of arms, $n$ is the number of rounds, and $D$ is the total delay. The result matches the lower bound within constants and requires no prior knowledge of $n$ or $D$. Additionally, we propose a refined tuning of the algorithm, which achieves $mathcal{O}(sqrt{kn}+min_{S}|S|+sqrt{D_{bar S}log(k)})$ regret guarantee, where $S$ is a set of rounds excluded from delay counting, $bar S = [n]setminus S$ are the counted rounds, and $D_{bar S}$ is the total delay in the counted rounds. If the delays are highly unbalanced, the latter regret guarantee can be significantly tighter than the former. The result requires no advance knowledge of the delays and resolves an open problem of Thune et al. (2019). The new FTRL algorithm and its refined tuning are anytime and require no doubling, which resolves another open problem of Thune et al. (2019).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا