ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar polar brightening and radius at 100 and 230 GHz observed by ALMA

62   0   0.0 ( 0 )
 نشر من قبل Caius Selhorst
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polar brightening of the Sun at radio frequencies has been studied for almost fifty years and yet a disagreement persists between solar atmospheric models and observations. Some observations reported brightening values much smaller than the expected values obtained from the models, with discrepancies being particularly large at millimeter wavelengths. New clues to calibrate the atmospheric models can be obtained with the advent of the Atacama Large Millimeter/submillimeter Array (ALMA) radio interferometer. In this work, we analyzed the lower limit of the polar brightening observed at 100 and 230 GHz by ALMA, during its Science Verification period, 2015 December 16-20. We find that the average polar intensity is higher than the disk intensity at 100 and 230 GHz, with larger brightness intensities at the South pole in eight of the nine maps analyzed. The observational results were compared with calculations of the millimetric limb brightnening emission for two semi-empirical atmospheric models, FAL- C (Fontenla et al. 1993) and SSC (Selhorst et al. 2005a). Both models presented larger limb intensities than the averaged observed values. The intensities obtained with the SSC model were closer to the observations, with polar brightenings of 10.5% and 17.8% at 100 and 230 GHz, respectively. This discrepancy may be due to the presence of chromospheric features (like spicules) at regions close to the limb.



قيم البحث

اقرأ أيضاً

We comparatively studied the long-term variation (1992-2017) in polar brightening observed with the Nobeyama Radioheliograph, the polar solar wind velocity with interplanetary scintillation observations at the Institute for Space-Earth Environmental Research, and the coronal hole distribution computed by potential field calculations of the solar corona using synoptic magnetogram data obtained at Kitt Peak National Solar Observatory. First, by comparing the solar wind velocity (V) and the brightness temperature (T_b) in the polar region, we found good correlation coefficients (CCs) between V and T_b in the polar regions, CC = 0.91 (0.83) for the northern (southern) polar region, and we obtained the V-T_b relationship as V =12.6 (T_b-10,667)^{1/2}+432. We also confirmed that the CC of V-T_b is higher than those of V-B and V-B/f, where B and f are the polar magnetic field strength and magnetic flux expansion rate, respectively. These results indicate that T_b is a more direct parameter than B or B/f for expressing solar wind velocity. Next, we analyzed the long-term variation of the polar brightening and its relation to the area of the polar coronal hole (A). As a result, we found that the polar brightening matches the probability distribution of the predicted coronal hole and that the CC between T_b and A is remarkably high, CC = 0.97. This result indicates that the polar brightening is strongly coupled to the size of the polar coronal hole. Therefore, the reasonable correlation of V-T_b is explained by V-A. In addition, by considering the anti-correlation between A and f found in a previous study, we suggest that the V-T_b relationship is another expression of the Wang-Sheeley relationship (V-1/f) in the polar regions.
To better understand the influence of the activity cycle on the solar atmosphere, we report the time variation of the radius observed at 37 GHz ($lambda$=8.1 mm) obtained by the Metsahovi Radio Observatory (MRO) through Solar Cycles 22 to 24 (1989-20 15). Almost 5800 maps were analyzed, however, due to instrumental setups changes the data set showed four distinct behaviors, which requested a normalisation process to allow the whole interval analysis. When the whole period was considered, the results showed a positive correlation index of 0.17 between the monthly means of the solar radius at 37 GHz and solar flux obtained at 10.7 cm (F10.7). This correlation index increased to 0.44, when only the data obtained during the last period without instrumental changes were considered (1999-2015). The solar radius correlation with the solar cycle agrees with the previous results obtained at mm/cm wavelengths (17 and 48 GHz), nevertheless, this result is the opposite of that reported at submillimetre wavelengths (212 and 405 GHz).
We succeeded in observing two large spicules simultaneously with the Atacama Large Millimeter/submillimeter Array (ALMA), the Interface Region Imaging Spectrograph (IRIS), and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observat ory. One is a spicule seen in the IRIS Mg II slit-jaw images and AIA 304AA images (MgII/304A spicule). The other one is a spicule seen in the 100GHz images obtained with ALMA (100GHz spicule). Although the 100GHz spicule overlapped with the MgII/304A spicule in the early phase, it did not show any corresponding structures in the IRIS Mg II and AIA 304A images after the early phase. It suggests that the spicules are individual events and do not have a physical relationship. To obtain the physical parameters of the 100GHz spicule, we estimate the optical depths as a function of temperature and density using two different methods. One is using the observed brightness temperature by assuming a filling factor, and the other is using an emission model for the optical depth. As a result of comparing them, the kinetic temperature of the plasma and the number density of ionized hydrogens in the 100GHz spicule are ~6800 K and 2.2 x 10^10 cm^-3. The estimated values can explain the absorbing structure in the 193A image, which appear as a counterpart of the 100GHz spicule. These results suggest that the 100GHz spicule presented in this paper is classified to a macrospicule without a hot sheath in former terminology.
Both the Cosmic Ray Flux (CRF) and Solar Energetic Particles (SEPs) have left an imprint on SOHO technical systems. While the solar array efficiency degraded irreversibly down to ~77% of its original level over roughly 1 1/2 solar cycles, Single Even t Upsets (SEUs) in the solid state recorder (SSR) have been reversed by the memory protection mechanism. We compare the daily CRF observed by the Oulu station with the daily SOHO SEU rate and with the Degradation curve of the solar arrays. The Oulu CRF and the SOHO SSR SEU rate are both modulated by the solar cycle and are highly correlated, except for sharp spikes in the SEU rate, caused by isolated SEP events, which also show up as discontinuities in the otherwise slowly decreasing solar ray efficiency. This allows to discriminate between effects with solar and non-solar origin and to compare the relative strength of both. We find that during solar cycle 23 (1996 Apr 1 -- 2008 Aug 31) only 6% of the total number of SSR SEUs were caused by SEPs; the remaining 94% were due to galactic cosmic rays. During the maximum period of cycle 23 (2000 Jan 1 -- 2003 Dec 31), the SEP contribution increased to 22%, and during 2001, the year with the highest SEP rate, to 30%. About 40% of the total solar array degradation during the 17 years from Jan 1996 through Feb 2013 can be attributed to proton events, i.e. the effect of a series of short-lived, violent SEP events is comparable to the cycle-integrated damage by cosmic rays.
121 - Huadong Chen , Jun Zhang , Suli Ma 2012
Using the multi-wavelength data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) spacecraft, we study a jet occurred in coronal hole near the northern pole of the Sun. The jet presented distinct helical upward motion during ejection. By tracking six identified moving features (MFs) in the jet, we found that the plasma moved at an approximately constant speed along the jets axis, meanwhile, they made a circular motion in the plane transverse to the axis. Inferred from linear and trigonometric fittings to the axial and transverse heights of the six tracks, the mean values of axial velocities, transverse velocities, angular speeds, rotation periods, and rotation radiuses of the jet are 114 km s$^{-1}$, 136 km s$^{-1}$, 0.81degr s$^{-1}$, 452 s, and 9.8 $times$ 10$^{3}$ km respectively. As the MFs rose, the jet width at the corresponding height increased. For the first time, we derived the height variation of the longitudinal magnetic field strength in the jet from the assumption of magnetic flux conservation. Our results indicate that, at the heights of 1 $times$ 10$^{4}$ $sim$ 7 $times$ 10$^{4}$ km from jet base, the flux density in the jet decreased from about 15 to 3 G as a function of B=0.5(R/R$_{sun}$-1)$^{-0.84}$ (G). A comparison was made with the other results in previous studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا