ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous analysis of SDSS spectra and GALEX photometry with STARLIGHT: Method and early results

86   0   0.0 ( 0 )
 نشر من قبل Ariel Werle
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine data from the Sloan Digital Sky Survey and the Galaxy Evolution Explorer to simultaneously analyze optical spectra and ultraviolet photometry of 231643 galaxies with the STARLIGHT spectral synthesis code using state-of-the-art stellar population models. We present a new method to estimate GALEX photometry in the SDSS spectroscopic aperture, which proves quite reliable if applied to large samples. In agreement with previous experiments with CALIFA, we find that adding UV constraints leads to a moderate increase on the fraction of $sim 10^7$ - $10^8$ yr populations and a concomitant decrease of younger and older components, yielding slightly older luminosity weighted mean stellar ages. These changes are most relevant in the low-mass end of the blue cloud. An increase in dust attenuation is observed for galaxies dominated by young stars. We investigate the contribution of different stellar populations to the fraction of light in GALEX and SDSS bands across the UV-optical color-magnitude diagram. As an example application, we use this $lambda$ dependence to highlight differences between retired galaxies with and without emission lines. In agreement with an independent study by Herpich et al., we find that the former show an excess of intermediate age populations when compared to the later. Finally, we test the suitability of two different prescription for dust, finding that our dataset is best fitted using the attenuation law of starburst galaxies. However, results for the Milky Way extinction curve improve with decreasing $tau_V$, especially for edge-on galaxies.



قيم البحث

اقرأ أيضاً

At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of eleven new faint (u sim17) ultraviolet standard st ars. High-precision photometry of these stars has been taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer and combined with new data from the Swift Ultraviolet Optical Telescope to provide precise photometric measures extending from the Near Infrared to the Far Ultraviolet. These stars were chosen because they are known to be hot (20,000 < T_eff < 50,000 K) DA white dwarfs with published Sloan spectra that should be photometrically stable. This careful selection allows us to compare the combined photometry and Sloan spectroscopy to models of pure hydrogen atmospheres to both constrain the underlying properties of the white dwarfs and test the ability of white dwarf models to predict the photometric measures. We find that the photometry provides good constraint on white dwarf temperatures, which demonstrates the ability of Swift/UVOT to investigate the properties of hot luminous stars. We further find that the models reproduce the photometric measures in all eleven passbands to within their systematic uncertainties. Within the limits of our photometry, we find the standard stars to be photometrically stable. This success indicates that the models can be used to calibrate additional filters to our standard system, permitting easier comparison of photometry from heterogeneous sources. The largest source of uncertainty in the model fitting is the uncertainty in the foreground reddening curve, a problem that is especially acute in the UV.
129 - P.F.L. Maxted 2009
We report the first results of our programme to obtain multi-epoch radial velocity measurements of stars with a strong far-UV excess to identify post common-envelope binaries (PCEBs). The targets have been identified using optical photometry from SDS S DR4, ultraviolet photometry from GALEX GR2 and proper motion information from SDSS DR5. We have obtained spectra at two or more epochs for 36 targets. Three of our targets show large radial velocity shifts (>50km/s) on a timescale of hours or days and are almost certainly PCEBs. For one of these targets (SDSS J104234.77+644205.4) we have obtained further spectroscopy to confirm that this is a PCEB with an orbital period of 4.74h and semi-amplitude K =165 km/s. Two targets are rapidly rotating K-dwarfs which appear to show small radial velocity shifts and have strong Ca II H+K emission lines. These may be wind-induced rapidly rotating (WIRRing) stars. These results show that we can use GALEX and SDSS photometry to identify PCEBs that cannot be identified using SDSS photometry alone, and to identify new WIRRing stars. A more comprehensive survey of stars identified using the methods developed in this paper will lead to a much improved understanding of common envelope evolution.
We explore the application of Bayesian image analysis to infer the properties of an SDSS early-type galaxy sample including AGN. We use GALPHAT (Yoon et al. 2010) with a Bayes-factor model comparison to photometrically infer an AGN population and ver ify this using spectroscopic signatures. Our combined posterior sample for the SDSS sample reveals distinct low and high concentration modes after the point-source flux is modeled. This suggests that ETG parameters are intrinsically bimodal. The bimodal signature was weak when analyzed by GALFIT (Peng et al. 2002, 2010). This led us to create several ensembles of synthetic images to investigate the bias of inferred structural parameters and compare with GALFIT. GALPHAT inferences are less biased, especially for high-concentration profiles: GALPHAT Sersic index $n$, $r_{e}$ and MAG deviate from the true values by $6%$, $7.6%$ and $-0.03 ,mathrm{mag}$, respectively, while GALFIT deviates by $15%$, $22%$ and $-0.09$, mag, respectively. In addition, we explore the reliability for the photometric detection of AGN using Bayes factors. For our SDSS sample with $r_{e}ge 7.92,$arcsec, we correctly identify central point sources with $mathrm{Mag_{PS}}-mathrm{Mag_{Sersic}}le 5$ for $nle6$ and $mathrm{Mag_{PS}}-mathrm{Mag_{Sersic}}le 3$ for $n>6$. The magnitude range increases and classification error decreases with increasing resolution, suggesting that this approach will excel for upcoming high-resolution surveys. Future work will extend this to models that test hypotheses of galaxy evolution through the cosmic time.
We present Bayesian AGN Decomposition Analysis for SDSS Spectra (BADASS), an open source spectral analysis code designed for automatic detailed deconvolution of AGN and host galaxy spectra, implemented in Python, and designed for the next generation of large scale surveys. BADASS simultaneously fits all spectral components, including power-law continuum, stellar line-of-sight velocity distribution, FeII emission, as well as forbidden (narrow), permitted (broad), and outflow emission line features, all performed using Markov Chain Monte Carlo to obtain robust uncertainties and autocorrelation analysis to assess parameter convergence. BADASS utilizes multiprocessing for batch fitting large samples of spectra while efficiently managing memory and computation resources and is currently being used in a cluster environment to fit thousands of SDSS spectra. We use BADASS to perform a correlation analysis of 63 SDSS type 1 AGNs with evidence of strong non-gravitational outflow kinematics in the [OIII]$lambda5007$ emission feature. We confirm findings from previous studies that show the core of the [OIII] profile is a suitable surrogate for stellar velocity dispersion $sigma_*$, however there is evidence that the core experiences broadening that scales with outflow velocity. We find sufficient evidence that $sigma_*$, [OIII] core dispersion, and the non-gravitational outflow dispersion of the [OIII] profile form a plane whose fit results in a scatter of $sim0.1$ dex. Finally, we discuss the implications, caveats, and recommendations when using the [OIII] dispersion as a surrogate for $sigma_*$ for the $M_{rm{BH}}-sigma_*$ relation.
104 - Adam F. Kowalski 2013
We present a homogeneous survey of line and continuum emission from near-ultraviolet (NUV) to optical wavelengths during twenty M dwarf flares with simultaneous, high cadence photometry and spectra. These data were obtained to study the white-light c ontinuum components at bluer and redder wavelengths than the Balmer jump. Our goals were to break the degeneracy between emission mechanisms that have been fit to broadband colors of flares and to provide constraints for radiative-hydrodynamic (RHD) flare models that seek to reproduce the white-light flare emission. The main results from the continuum analysis are the following: 1) the detection of Balmer continuum (in emission) that is present during all flares and with a wide range of relative contributions to the continuum flux at bluer wavelengths than the Balmer jump; 2) a blue continuum at flare maximum that is linearly decreasing with wavelength from lambda = 4000-4800AA, matched by the spectral shape of hot, blackbody emission with typical temperatures of T_{BB}~9000-14,000 K; 3) a redder continuum apparent at wavelengths longer than Hbeta (lambda > 4900AA) which becomes relatively more important to the energy budget during the late gradual phase. We calculate Balmer jump flux ratios and compare to RHD model spectra. The model ratios are too large and the blue-optical (lambda = 4000-4800AA) slopes are too red in both the impulsive and gradual decay phases of all twenty flares. This discrepancy implies that further work is needed to understand the heating at high column mass during dMe flares. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا