ﻻ يوجد ملخص باللغة العربية
We extend the position-space renormalization procedure, where renormalization factors are calculated from Greens functions in position space, by introducing a technique to take the average of Greens functions over spheres. In addition to reducing discretization errors, this technique enables the resulting position-space correlators to be evaluated at any physical distance, making them continuous functions similar to the $O(4)$-symmetric position-space Greens functions in the continuum theory but with a residual dependence on a regularization parameter, the lattice spacing $a$. We can then take the continuum limit of these renormalized quantities calculated at the same physical renormalization scale $|x|$ and investigate the resulting $|x|$-dependence to identify the appropriate renormalization window. As a numerical test of the spherical averaging technique, we determine the renormalized light and strange quark masses by renormalizing the scalar current. We see a substantial reduction of discretization effects on the scalar current correlator and an enhancement of the renormalization window. The numerical simulation is carried out with $2+1$-flavor domain-wall fermions at three lattice cutoffs in the range 1.79--3.15~GeV.
We have technically improved the non-perturbative renormalization method, proposed by Martinelli et al., by using quark momentum sources and sinks. Composite two-fermion operators up to three derivatives have been measured for Wilson fermions and She
We discuss a specific cut-off effect which appears in applying the non-perturbative RI/MOM scheme to compute the renormalization constants. To illustrate the problem a Dirac operator satisfying the Ginsparg-Wilson relation is used, but the arguments
Quark bilinear operators with staple-shaped Wilson lines are used to study transverse-momentum-dependent parton distribution functions (TMDPDFs) from lattice quantum chromodynamics (QCD). Here, the renormalization factors for the isovector operators,
In this paper we present one-loop results for the renormalization of nonlocal quark bilinear operators, containing a staple-shaped Wilson line, in both continuum and lattice regularizations. The continuum calculations were performed in dimensional re
A novel method for nonperturbative renormalization of lattice operators is introduced, which lends itself to the calculation of renormalization factors for nonsinglet as well as singlet operators. The method is based on the Feynman-Hellmann relation,