ﻻ يوجد ملخص باللغة العربية
A novel method for nonperturbative renormalization of lattice operators is introduced, which lends itself to the calculation of renormalization factors for nonsinglet as well as singlet operators. The method is based on the Feynman-Hellmann relation, and involves computing two-point correlators in the presence of generalized background fields arising from introducing additional operators into the action. As a first application, and test of the method, we compute the renormalization factors of the axial vector current $A_mu$ and the scalar density $S$ for both nonsinglet and singlet operators for $N_f=3$ flavors of SLiNC fermions. For nonsinglet operators, where a meaningful comparison is possible, perfect agreement with recent calculations using standard three-point function techniques is found.
In this paper we present the perturbative computation of the difference between the renormalization factors of flavor singlet ($sum_fbarpsi_fGammapsi_f$, $f$: flavor index) and nonsinglet ($barpsi_{f_1} Gamma psi_{f_2}, f_1 eq f_2$) bilinear quark o
Quark bilinear operators with staple-shaped Wilson lines are used to study transverse-momentum-dependent parton distribution functions (TMDPDFs) from lattice quantum chromodynamics (QCD). Here, the renormalization factors for the isovector operators,
We have technically improved the non-perturbative renormalization method, proposed by Martinelli et al., by using quark momentum sources and sinks. Composite two-fermion operators up to three derivatives have been measured for Wilson fermions and She
We discuss a specific cut-off effect which appears in applying the non-perturbative RI/MOM scheme to compute the renormalization constants. To illustrate the problem a Dirac operator satisfying the Ginsparg-Wilson relation is used, but the arguments
We extend the position-space renormalization procedure, where renormalization factors are calculated from Greens functions in position space, by introducing a technique to take the average of Greens functions over spheres. In addition to reducing dis