ترغب بنشر مسار تعليمي؟ اضغط هنا

Deciphering the large-scale environment of radio galaxies in the local Universe: where do they born, grow and die?

320   0   0.0 ( 0 )
 نشر من قبل Francesco Massaro
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The role played by the large-scale environment on the nuclear activity of radio galaxies (RGs), is still not completely understood. Accretion mode, jet power and galaxy evolution are connected with their large-scale environment from tens to hundreds of kpc. Here we present a detailed, statistical, analysis of the large-scale environment for two samples of RGs up to redshifts $z_mathrm{src}$=0.15. The main advantages of our study, with respect to those already present in the literature, are due to the extremely homogeneous selection criteria of catalogs adopted to perform our investigation. This is also coupled with the use of several clustering algorithms. We performed a direct search of galaxy-rich environments around RGs using them as beacon. To perform this study we also developed a new method that does not appear to suffer by a strong $z_mathrm{src}$ dependence as other algorithms. We conclude that, despite their radio morphological (FR,I $vs$ FR,II) and/or their optical (HERG $vs$ LERG) classification, RGs in the local Universe tend to live in galaxy-rich large-scale environments having similar characteristics and richness. We highlight that the fraction of FR,Is-LERG, inhabiting galaxy rich environments, appears larger than that of FR,IIs-LERG. We also found that 5 out of 7 FR,II-HERGs, with $z_mathrm{src}leq$0.11, lie in groups/clusters of galaxies. However, we recognize that, despite the high level of completeness of our catalogs, when restricting to the local Universe, the low number of HERGs ($sim$10% of the total FR,IIs investigated) prevent us to make a strong statistical conclusion about this source class.



قيم البحث

اقرأ أيضاً

In our previous analysis we investigated the large-scale environment of two samples of radio galaxies (RGs) in the local Universe (i.e. with redshifts z<0.15), classified as FR I and FR II on the basis of their radio morphology. The analysis was carr ied out using i) extremely homogeneous catalogs and ii) a new method, known as cosmological overdensity, to investigate their large-scale environments. We concluded that, independently by the shape of their radio extended structure, RGs inhabit galaxy-rich large-scale environments with similar characteristics and richness. In the present work, we first highlight additional advantages of our procedure, that does not suffer cosmological biases and/or artifacts, and then we carry out an additional statistical test to strengthen our previous results. We also investigate properties of RG environments using those of the cosmological neighbors. We find that large-scale environments of both FRIs and FRIIs are remarkably similar and independent on the properties of central RG. Finally, we highlight the importance of comparing radio sources in the same redshift bins to obtain a complete overview of their large-scale environments.
We explore the properties of the large-scale environment of FR0 radio galaxies belonging to the FR0CAT sample which includes 104 compact radio sources associated with nearby (z<0.05) early-type galaxies. By using various estimators we find that FR0s live in regions of higher than the average galaxies density and a factor two lower density, on average, with respect to FRI radio galaxies. This latter difference is driven by the large fraction (63%) of FR0s located in groups formed by less than 15 galaxies, an environment which FRIs rarely (17%) inhabit. Beside the lack of substantial extended radio emission defining the FR0s class, this is the first significant difference between the properties of these two populations of low power radio galaxies. We interpret the differences in environment between FR0s and FRIs as the due to an evolutionary link between local galaxies density, BH spin, jet power, and extended radio emission.
72 - M. Jamrozy 2004
Giant radio galaxies (GRGs), with linear sizes larger than 1 Mpc (H0=50 km/s/Mpc), represent the biggest single objects in the Universe. GRGs are rare among the entire population of radio galaxies (RGs) and their physical evolution is not well unders tood though for many years they have been of special interest for several reasons. The lobes of radio sources can compress cold gas clumps and trigger star or even dwarf galaxy formation, they can also transport gas from a host galaxy to large distances and seed the IGM with magnetic fields. Since GRGs have about 10 to 100 times larger sizes than normal RGs, their influence on the ambient medium is correspondingly wider and is pronounced on scales comparable to those of clusters of galaxies or larger. Therefore `giants could play an important role in the process of large-scale structure formation in the Universe. Recently, thanks to the new all sky radio surveys, significant progress in searching for new GRGs has been made.
The finding that massive galaxies grow with cosmic time fired the starting gun for the search of objects which could have survived up to the present day without suffering substantial changes (neither in their structures, neither in their stellar popu lations). Nevertheless, and despite the community efforts, up to now only one firm candidate to be considered one of these relics is known: NGC 1277. Curiously, this galaxy is located at the centre of one of the most rich near galaxy clusters: Perseus. Is its location a matter of chance? Should relic hunters focus their search on galaxy clusters? In order to reply this question, we have performed a simultaneous and analogous analysis using simulations (Millennium I-WMAP7) and observations (New York University Value-Added Galaxy Catalogue). Our results in both frameworks agree: it is more probable to find relics in high density environments.
In the local Universe, there is a handful of dwarf compact star-forming galaxies with extremely low oxygen abundances. It has been proposed that they are young, having formed a large fraction of their stellar mass during their last few hundred Myr. H owever, little is known about the fraction of young stellar populations in more massive galaxies. In a previous article, we analyzed 280 000 SDSS spectra to identify a surprisingly large sample of more massive Very Young Galaxies (VYGs), defined to have formed at least $50%$ of their stellar mass within the last 1 Gyr. Here, we investigate in detail the properties of a subsample of 207 galaxies that are VYGs according to all three of our spectral models. We compare their properties with those of control sample galaxies (CSGs). We find that VYGs tend to have higher surface brightness and to be more compact, dusty, asymmetric, and clumpy than CSGs. Analysis of a subsample with HI detections reveals that VYGs are more gas-rich than CSGs. VYGs tend to reside more in the inner parts of low-mass groups and are twice as likely to be interacting with a neighbour galaxy than CSGs. On the other hand, VYGs and CSGs have similar gas metallicities and large scale environments (relative to filaments and voids). These results suggest that gas-rich interactions and mergers are the main mechanisms responsible for the recent triggering of star formation in low-redshift VYGs, except for the lowest mass VYGs, where the starbursts may arise from a mixture of mergers and gas infall.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا