ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-Scale Radio Structure in the Universe: Giant Radio Galaxies

73   0   0.0 ( 0 )
 نشر من قبل Marek Jamrozy
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Jamrozy




اسأل ChatGPT حول البحث

Giant radio galaxies (GRGs), with linear sizes larger than 1 Mpc (H0=50 km/s/Mpc), represent the biggest single objects in the Universe. GRGs are rare among the entire population of radio galaxies (RGs) and their physical evolution is not well understood though for many years they have been of special interest for several reasons. The lobes of radio sources can compress cold gas clumps and trigger star or even dwarf galaxy formation, they can also transport gas from a host galaxy to large distances and seed the IGM with magnetic fields. Since GRGs have about 10 to 100 times larger sizes than normal RGs, their influence on the ambient medium is correspondingly wider and is pronounced on scales comparable to those of clusters of galaxies or larger. Therefore `giants could play an important role in the process of large-scale structure formation in the Universe. Recently, thanks to the new all sky radio surveys, significant progress in searching for new GRGs has been made.



قيم البحث

اقرأ أيضاً

In order to find clues to the origin of the winged or X-shaped radio galaxies (XRGs) we investigate here the parent galaxies of a large sample of 106 XRGs for optical-radio axes alignment, interstellar medium, black hole mass, and large-scale environ ment. For 41 of the XRGs it was possible to determine the optical major axis and the primary radio axis and the strong tendency for the two axes to be fairly close is confirmed. However, several counter-examples were also found and these could challenge the widely discussed backflow diversion model for the origin of the radio wings. Comparison with a well-defined large sample of normal FR II radio galaxies has revealed that: (i) XRGs possess slightly less massive central black holes than the normal radio galaxies (average masses being log$M_{rm BH} sim$ 8.81 $M_{odot}$ and 9.07 $M_{odot}$, respectively); (ii) a much higher fraction of XRGs ($sim$ 80%) exhibits red mid-IR colors ($W2 - W3 > 1.5$), indicating a population of young stars and/or an enhanced dust mass, probably due to relatively recent galaxy merger(s). A comparison of the large-scale environment (i.e., within $sim$ 1 Mpc) shows that both XRGs and FRII radio galaxies inhabit similarly poor galaxy clustering environments (medium richness being 8.94 and 11.87, respectively). Overall, the origin of XRGs seems difficult to reconcile with a single dominant physical mechanism and competing mechanisms seem prevalent.
We explore the properties of the large-scale environment of FR0 radio galaxies belonging to the FR0CAT sample which includes 104 compact radio sources associated with nearby (z<0.05) early-type galaxies. By using various estimators we find that FR0s live in regions of higher than the average galaxies density and a factor two lower density, on average, with respect to FRI radio galaxies. This latter difference is driven by the large fraction (63%) of FR0s located in groups formed by less than 15 galaxies, an environment which FRIs rarely (17%) inhabit. Beside the lack of substantial extended radio emission defining the FR0s class, this is the first significant difference between the properties of these two populations of low power radio galaxies. We interpret the differences in environment between FR0s and FRIs as the due to an evolutionary link between local galaxies density, BH spin, jet power, and extended radio emission.
268 - Jaan Einasto 2009
A short overview is given on the development of our present paradigm of the large scale structure of the Universe with emphasis on the role of Ya. B. Zeldovich. Next we use the Sloan Digital Sky Survey data and show that the distribution of phases of density waves of various scale in the present-day Universe are correlated. Using numerical simulations of structure evolution we show that the skeleton of the cosmic web was present already in an early stage of the evolution of structure. The positions of maxima and minima of density waves (their phases) are the more stable, the larger is the wavelength. The birth of the first generation of stars occured most probably in the central regions of rich proto-superclusters where the density was highest in the early Universe.
99 - B. H. C. Emonts 2010
An important aspect of solving the long-standing question as to what triggers various types of Active Galactic Nuclei involves a thorough understanding of the overall properties and formation history of their host galaxies. This is the second in a se ries of papers that systematically study the large-scale properties of cold neutral hydrogen (HI) gas in nearby radio galaxies. The main goal is to investigate the importance of gas-rich galaxy mergers and interactions among radio-loud AGN. In this paper we present results of a complete sample of classical low-power radio galaxies. We find that extended Fanaroff & Riley type-I radio sources are generally not associated with gas-rich galaxy mergers or ongoing violent interactions, but occur in early-type galaxies without large (> 10^8 M_sun) amounts of extended neutral hydrogen gas. In contrast, enormous discs/rings of HI gas (with sizes up to 190 kpc and masses up to 2 x 10^10 M_sun) are detected around the host galaxies of a significant fraction of the compact radio sources in our sample. This segregation in HI mass with radio source size likely indicates that these compact radio sources are either confined by large amounts of gas in the central region, or that their fuelling is inefficient and different from the fuelling process of classical FR-I radio sources. To first order, the overall HI properties of our complete sample (detection rate, mass and morphology) appear similar to those of radio-quiet early-type galaxies. If confirmed by better statistics, this would imply that low-power radio-AGN activity may be a short and recurrent phase that occurs at some point during the lifetime of many early-type galaxies.
Volonteri et al. (2011) found that the number of radio-loud quasars above redshift 4 calculated from the luminosity function (based upon Swift/BAT observations) is much smaller than the number estimated from the known high-redshift beamed sources, bl azars, assuming that for every beamed source with a Lorentz factor of $Gamma$, statistically $2 Gamma^2$ non-beamed sources should exist. To explain the missing misaligned (non-beamed) population of high-redshift sources, they proposed various explanations, involving heavy optical obscuration and significantly different Lorentz factors at early cosmological epochs. Our EVN observations targeting high-redshift ($z>4$) blazar candidates revealed 3 sources not showing relativistic beaming, but rather kpc-scale double structures. These three sources have significant radio emission resolved out with the EVN, while they are compact on $sim 5-10$ arcsec scale. Our dual-frequency ($1.5$ and $5$ GHz) e-MERLIN observations of these three sources revealed a rich morphology, bending jets, and hot spots with possible sites of interaction between the jets and the surrounding medium at intermediate scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا