ﻻ يوجد ملخص باللغة العربية
The FlatDot detector has been used to demonstrate the separation of Cherenkov and scintillation light for 1 to 2MeV electrons in linear alkylbenzene (LAB). With an average PMT transit time spread (TTS) of 200ps, the early light in each event is clearly dominated by the Cherenkov signal, which on average comprises $86^{+2}_{-3}%$ of the light collected in the first 4.1ns of each event. The spatial distributions of the Cherenkov and scintillation light are found to match those predicted in Monte Carlo simulations. This is a key step towards demonstrating direction reconstruction of $beta$ decays, a technique that could reduce $^8$B solar neutrino backgrounds for neutrinoless double-beta decay experiments in liquid scintillator.
Reflectance of silicon photomultipliers (SiPMs) is an important aspect to understand the large scale SiPM-based detector systems and evaluate the performance of SiPMs. We report the reflactance of two SiPMs, NUV-HD-lowCT and S14160-60-50HS manufactur
Linear alkylbenzene (LAB) based liquid scintillator is adopted as the central detector for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors. A quenching factor measurement instrument is designed based on the Compton
Linear alkylbenzene (LAB) is adopted to be the organic solvent for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors due to the ultra-transparency. However the current Rayleigh scattering length calculation disagrees
Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the c
We report the measurements of the thermal diffusivity and the isobaric specific heat capacity of linear alkylbenzene at about 23$,^{circ}mathrm{C}$ with the standard atmosphere, which are measured for the first time. The conductivity, heat capacity r