ﻻ يوجد ملخص باللغة العربية
Linear alkylbenzene (LAB) based liquid scintillator is adopted as the central detector for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors. A quenching factor measurement instrument is designed based on the Compton scattering process. Two different quenchers for the liquid scintillator have been investigated and the result shows that the scintillation light of the JUNO liquid scintillator can be quenched to a level. The emission spectrum with the absence of the quencher is also showing a desired behavior.
Reflectance of silicon photomultipliers (SiPMs) is an important aspect to understand the large scale SiPM-based detector systems and evaluate the performance of SiPMs. We report the reflactance of two SiPMs, NUV-HD-lowCT and S14160-60-50HS manufactur
We report the measurements of the thermal diffusivity and the isobaric specific heat capacity of linear alkylbenzene at about 23$,^{circ}mathrm{C}$ with the standard atmosphere, which are measured for the first time. The conductivity, heat capacity r
Linear alkylbenzene (LAB) is adopted to be the organic solvent for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors due to the ultra-transparency. However the current Rayleigh scattering length calculation disagrees
Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the c
The FlatDot detector has been used to demonstrate the separation of Cherenkov and scintillation light for 1 to 2MeV electrons in linear alkylbenzene (LAB). With an average PMT transit time spread (TTS) of 200ps, the early light in each event is clear