ﻻ يوجد ملخص باللغة العربية
fMRI semantic category understanding using linguistic encoding models attempt to learn a forward mapping that relates stimuli to the corresponding brain activation. Classical encoding models use linear multi-variate methods to predict the brain activation (all voxels) given the stimulus. However, these methods essentially assume multiple regions as one large uniform region or several independent regions, ignoring connections among them. In this paper, we present a mixture of experts-based model where a group of experts captures brain activity patterns related to particular regions of interest (ROI) and also show the discrimination across different experts. The model is trained word stimuli encoded as 25-dimensional feature vectors as input and the corresponding brain responses as output. Given a new word (25-dimensional feature vector), it predicts the entire brain activation as the linear combination of multiple experts brain activations. We argue that each expert learns a certain region of brain activations corresponding to its category of words, which solves the problem of identifying the regions with a simple encoding model. We showcase that proposed mixture of experts-based model indeed learns region-based experts to predict the brain activations with high spatial accuracy.
fMRI semantic category understanding using linguistic encoding models attempts to learn a forward mapping that relates stimuli to the corresponding brain activation. State-of-the-art encoding models use a single global model (linear or non-linear) to
In this paper, we propose a novel mixture of expert architecture for learning polyhedral classifiers. We learn the parameters of the classifierusing an expectation maximization algorithm. Wederive the generalization bounds of the proposedapproach. Th
The Mixture-of-experts (MoE) architecture is showing promising results in multi-task learning (MTL) and in scaling high-capacity neural networks. State-of-the-art MoE models use a trainable sparse gate to select a subset of the experts for each input
Sparsely-gated Mixture of Experts networks (MoEs) have demonstrated excellent scalability in Natural Language Processing. In Computer Vision, however, almost all performant networks are dense, that is, every input is processed by every parameter. We
Extracting activation patterns from functional Magnetic Resonance Images (fMRI) datasets remains challenging in rapid-event designs due to the inherent delay of blood oxygen level-dependent (BOLD) signal. The general linear model (GLM) allows to esti