ترغب بنشر مسار تعليمي؟ اضغط هنا

HRF estimation improves sensitivity of fMRI encoding and decoding models

199   0   0.0 ( 0 )
 نشر من قبل Fabian Pedregosa
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

Extracting activation patterns from functional Magnetic Resonance Images (fMRI) datasets remains challenging in rapid-event designs due to the inherent delay of blood oxygen level-dependent (BOLD) signal. The general linear model (GLM) allows to estimate the activation from a design matrix and a fixed hemodynamic response function (HRF). However, the HRF is known to vary substantially between subjects and brain regions. In this paper, we propose a model for jointly estimating the hemodynamic response function (HRF) and the activation patterns via a low-rank representation of task effects.This model is based on the linearity assumption behind the GLM and can be computed using standard gradient-based solvers. We use the activation patterns computed by our model as input data for encoding and decoding studies and report performance improvement in both settings.



قيم البحث

اقرأ أيضاً

Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape of the HRF varies across brain regions and subjects. This suggests that a data-driven estimation of this function could lead to more statistical power when modeling BOLD fMRI data. However, unconstrained estimation of the HRF can yield highly unstable results when the number of free parameters is large. We develop a method for the joint estimation of activation and HRF using a rank constraint causing the estimated HRF to be equal across events/conditions, yet permitting it to be different across voxels. Model estimation leads to an optimization problem that we propose to solve with an efficient quasi-Newton method exploiting fast gradient computations. This model, called GLM with Rank-1 constraint (R1-GLM), can be extended to the setting of GLM with separate designs which has been shown to improve decoding accuracy in brain activity decoding experiments. We compare 10 different HRF modeling methods in terms of encoding and decoding score in two different datasets. Our results show that the R1-GLM model significantly outperforms competing methods in both encoding and decoding settings, positioning it as an attractive method both from the points of view of accuracy and computational efficiency.
fMRI semantic category understanding using linguistic encoding models attempt to learn a forward mapping that relates stimuli to the corresponding brain activation. Classical encoding models use linear multi-variate methods to predict the brain activ ation (all voxels) given the stimulus. However, these methods essentially assume multiple regions as one large uniform region or several independent regions, ignoring connections among them. In this paper, we present a mixture of experts-based model where a group of experts captures brain activity patterns related to particular regions of interest (ROI) and also show the discrimination across different experts. The model is trained word stimuli encoded as 25-dimensional feature vectors as input and the corresponding brain responses as output. Given a new word (25-dimensional feature vector), it predicts the entire brain activation as the linear combination of multiple experts brain activations. We argue that each expert learns a certain region of brain activations corresponding to its category of words, which solves the problem of identifying the regions with a simple encoding model. We showcase that proposed mixture of experts-based model indeed learns region-based experts to predict the brain activations with high spatial accuracy.
235 - Shinsuke Koyama 2012
Neural coding is a field of study that concerns how sensory information is represented in the brain by networks of neurons. The link between external stimulus and neural response can be studied from two parallel points of view. The first, neural enco ding refers to the mapping from stimulus to response, and primarily focuses on understanding how neurons respond to a wide variety of stimuli, and on constructing models that accurately describe the stimulus-response relationship. Neural decoding, on the other hand, refers to the reverse mapping, from response to stimulus, where the challenge is to reconstruct a stimulus from the spikes it evokes. Since neuronal response is stochastic, a one-to-one mapping of stimuli into neural responses does not exist, causing a mismatch between the two viewpoints of neural coding. Here, we use these two perspectives to investigate the question of what rate coding is, in the simple setting of a single stationary stimulus parameter and a single stationary spike train represented by a renewal process. We show that when rate codes are defined in terms of encoding, i.e., the stimulus parameter is mapped onto the mean firing rate, the rate decoder given by spike counts or the sample mean, does not always efficiently decode the rate codes, but can improve efficiency in reading certain rate codes, when correlations within a spike train are taken into account.
Volatility of financial stock is referring to the degree of uncertainty or risk embedded within a stocks dynamics. Such risk has been received huge amounts of attention from diverse financial researchers. By following the concept of regime-switching model, we proposed a non-parametric approach, named encoding-and-decoding, to discover multiple volatility states embedded within a discrete time series of stock returns. The encoding is performed across the entire span of temporal time points for relatively extreme events with respect to a chosen quantile-based threshold. As such the return time series is transformed into Bernoulli-variable processes. In the decoding phase, we computationally seek for locations of change points via estimations based on a new searching algorithm conjunction to the Bayesian information criterion applied on the observed collection of recurrence times upon the binary process. Besides the independence required for building the Geometric distributional likelihood function, the proposed approach can functionally partition the entire return time series into a collection of homogeneous segments without any assumptions of dynamic structure and underlying distributions. In the numerical experiments, our approach is found favorably compared with Viterbis under Hidden Markov Model (HMM) settings. In the real data applications, volatility dynamics of every single stock of S&P500 are computed and revealed. Then, a non-linear dependency of any stock-pair is derived by measuring through concurrent volatility states. Finally, various networks dealing with distinct financial implications are consequently established to represent different aspects of global connectivity among all stocks in S&P500.
With the introduction of the Electric Health Records, large amounts of digital data become available for analysis and decision support. When physicians are prescribing treatments to a patient, they need to consider a large range of data variety and v olume, making decisions increasingly complex. Machine learning based Clinical Decision Support systems can be a solution to the data challenges. In this work we focus on a class of decision support in which the physicians decision is directly predicted. Concretely, the model would assign higher probabilities to decisions that it presumes the physician are more likely to make. Thus the CDS system can provide physicians with rational recommendations. We also address the problem of correlation in target features: Often a physician is required to make multiple (sub-)decisions in a block, and that these decisions are mutually dependent. We propose a solution to the target correlation problem using a tensor factorization model. In order to handle the patients historical information as sequential data, we apply the so-called Encoder-Decoder-Framework which is based on Recurrent Neural Networks (RNN) as encoders and a tensor factorization model as a decoder, a combination which is novel in machine learning. With experiments with real-world datasets we show that the proposed model does achieve better prediction performances.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا