ترغب بنشر مسار تعليمي؟ اضغط هنا

A^2Net: Adjacent Aggregation Networks for Image Raindrop Removal

359   0   0.0 ( 0 )
 نشر من قبل Huangxing Lin
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing methods for single images raindrop removal either have poor robustness or suffer from parameter burdens. In this paper, we propose a new Adjacent Aggregation Network (A^2Net) with lightweight architectures to remove raindrops from single images. Instead of directly cascading convolutional layers, we design an adjacent aggregation architecture to better fuse features for rich representations generation, which can lead to high quality images reconstruction. To further simplify the learning process, we utilize a problem-specific knowledge to force the network focus on the luminance channel in the YUV color space instead of all RGB channels. By combining adjacent aggregating operation with color space transformation, the proposed A^2Net can achieve state-of-the-art performances on raindrop removal with significant parameters reduction.



قيم البحث

اقرأ أيضاً

Raindrops adhered to a glass window or camera lens can severely hamper the visibility of a background scene and degrade an image considerably. In this paper, we address the problem by visually removing raindrops, and thus transforming a raindrop degr aded image into a clean one. The problem is intractable, since first the regions occluded by raindrops are not given. Second, the information about the background scene of the occluded regions is completely lost for most part. To resolve the problem, we apply an attentive generative network using adversarial training. Our main idea is to inject visual attention into both the generative and discriminative networks. During the training, our visual attention learns about raindrop regions and their surroundings. Hence, by injecting this information, the generative network will pay more attention to the raindrop regions and the surrounding structures, and the discriminative network will be able to assess the local consistency of the restored regions. This injection of visual attention to both generative and discriminative networks is the main contribution of this paper. Our experiments show the effectiveness of our approach, which outperforms the state of the art methods quantitatively and qualitatively.
Rain streaks and rain drops are two natural phenomena, which degrade image capture in different ways. Currently, most existing deep deraining networks take them as two distinct problems and individually address one, and thus cannot deal adequately wi th both simultaneously. To address this, we propose a Dual Attention-in-Attention Model (DAiAM) which includes two DAMs for removing both rain streaks and raindrops. Inside the DAM, there are two attentive maps - each of which attends to the heavy and light rainy regions, respectively, to guide the deraining process differently for applicable regions. In addition, to further refine the result, a Differential-driven Dual Attention-in-Attention Model (D-DAiAM) is proposed with a heavy-to-light scheme to remove rain via addressing the unsatisfying deraining regions. Extensive experiments on one public raindrop dataset, one public rain streak and our synthesized joint rain streak and raindrop (JRSRD) dataset have demonstrated that the proposed method not only is capable of removing rain streaks and raindrops simultaneously, but also achieves the state-of-the-art performance on both tasks.
Cloud-based overlays are often present in optical remote sensing images, thus limiting the application of acquired data. Removing clouds is an indispensable pre-processing step in remote sensing image analysis. Deep learning has achieved great succes s in the field of remote sensing in recent years, including scene classification and change detection. However, deep learning is rarely applied in remote sensing image removal clouds. The reason is the lack of data sets for training neural networks. In order to solve this problem, this paper first proposed the Remote sensing Image Cloud rEmoving dataset (RICE). The proposed dataset consists of two parts: RICE1 contains 500 pairs of images, each pair has images with cloud and cloudless size of 512*512; RICE2 contains 450 sets of images, each set contains three 512*512 size images. , respectively, the reference picture without clouds, the picture of the cloud and the mask of its cloud. The dataset is freely available at url{https://github.com/BUPTLdy/RICE_DATASET}.
We present a general technique that performs both artifact removal and image compression. For artifact removal, we input a JPEG image and try to remove its compression artifacts. For compression, we input an image and process its 8 by 8 blocks in a s equence. For each block, we first try to predict its intensities based on previous blocks; then, we store a residual with respect to the input image. Our technique reuses JPEGs legacy compression and decompression routines. Both our artifact removal and our image compression techniques use the same deep network, but with different training weights. Our technique is simple and fast and it significantly improves the performance of artifact removal and image compression.
Many images shared over the web include overlaid objects, or visual motifs, such as text, symbols or drawings, which add a description or decoration to the image. For example, decorative text that specifies where the image was taken, repeatedly appea rs across a variety of different images. Often, the reoccurring visual motif, is semantically similar, yet, differs in location, style and content (e.g. text placement, font and letters). This work proposes a deep learning based technique for blind removal of such objects. In the blind setting, the location and exact geometry of the motif are unknown. Our approach simultaneously estimates which pixels contain the visual motif, and synthesizes the underlying latent image. It is applied to a single input image, without any user assistance in specifying the location of the motif, achieving state-of-the-art results for blind removal of both opaque and semi-transparent visual motifs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا