ﻻ يوجد ملخص باللغة العربية
Cloud-based overlays are often present in optical remote sensing images, thus limiting the application of acquired data. Removing clouds is an indispensable pre-processing step in remote sensing image analysis. Deep learning has achieved great success in the field of remote sensing in recent years, including scene classification and change detection. However, deep learning is rarely applied in remote sensing image removal clouds. The reason is the lack of data sets for training neural networks. In order to solve this problem, this paper first proposed the Remote sensing Image Cloud rEmoving dataset (RICE). The proposed dataset consists of two parts: RICE1 contains 500 pairs of images, each pair has images with cloud and cloudless size of 512*512; RICE2 contains 450 sets of images, each set contains three 512*512 size images. , respectively, the reference picture without clouds, the picture of the cloud and the mask of its cloud. The dataset is freely available at url{https://github.com/BUPTLdy/RICE_DATASET}.
Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image r
It is of great importance to preserve locality and similarity information in semi-supervised learning (SSL) based applications. Graph based SSL and manifold regularization based SSL including Laplacian regularization (LapR) and Hypergraph Laplacian r
Recently, manifold regularized semi-supervised learning (MRSSL) received considerable attention because it successfully exploits the geometry of the intrinsic data probability distribution including both labeled and unlabeled samples to leverage the
Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass varianc
To better understand scene images in the field of remote sensing, multi-label annotation of scene images is necessary. Moreover, to enhance the performance of deep learning models for dealing with semantic scene understanding tasks, it is vital to tr