ﻻ يوجد ملخص باللغة العربية
The Boussinesq equations are known since the end of the XIXst century. However, the proliferation of various textsc{Boussinesq}-type systems started only in the second half of the XXst century. Today they come under various flavours depending on the goals of the modeller. At the beginning of the XXIst century an effort to classify such systems, at least for even bottoms, was undertaken and developed according to both different physical regimes and mathematical properties, with special emphasis, in this last sense, on the existence of symmetry groups and their connection to conserved quantities. Of particular interest are those systems admitting a symplectic structure, with the subsequent preservation of the total energy represented by the Hamiltonian. In the present paper a family of Boussinesq-type systems with multi-symplectic structure is introduced. Some properties of the new systems are analyzed: their relation with already known Boussinesq models, the identification of those systems with additional Hamiltonian structure as well as other mathematical features like well-posedness and existence of different types of solitary-wave solutions. The consistency of multi-symplectic systems with the full Euler equations is also discussed.
In this paper we consider the numerical approximation of systems of Boussinesq-type to model surface wave propagation. Some theoretical properties of these systems (multi-symplectic and Hamiltonian formulations, well-posedness and existence of solita
Starting from the construction of the free quantum scalar field of mass $mgeq 0$ we give mathematically precise and rigoro
In this paper we derive generalized forms of the Camassa-Holm (CH) equation from a Boussinesq-type equation using a two-parameter asymptotic expansion based on two small parameters characterizing nonlinear and dispersive effects and strictly followin
We consider a class of Boussinesq systems of Bona-Smith type in two space dimensions approximating surface wave flows modelled by the three-dimensional Euler equations. We show that various initial-boundary-value problems for these systems, posed on
Negative index materials are artificial structures whose refractive index has a negative value over some frequency range. These materials were postulated and investigated theoretically by Veselago in 1964 and were confirmed experimentally by Shelby,