ترغب بنشر مسار تعليمي؟ اضغط هنا

Boussinesq Systems of Bona-Smith Type on Plane Domains: Theory and Numerical Analysis

139   0   0.0 ( 0 )
 نشر من قبل Dimitrios Mitsotakis
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a class of Boussinesq systems of Bona-Smith type in two space dimensions approximating surface wave flows modelled by the three-dimensional Euler equations. We show that various initial-boundary-value problems for these systems, posed on a bounded plane domain are well posed locally in time. In the case of reflective boundary conditions, the systems are discretized by a modified Galerkin method which is proved to converge in $L^2$ at an optimal rate. Numerical experiments are presented with the aim of simulating two-dimensional surface waves in complex plane domains with a variety of initial and boundary conditions, and comparing numerical solutions of Bona-Smith systems with analogous solutions of the BBM-BBM system.



قيم البحث

اقرأ أيضاً

109 - Angel Duran 2018
The Boussinesq equations are known since the end of the XIXst century. However, the proliferation of various textsc{Boussinesq}-type systems started only in the second half of the XXst century. Today they come under various flavours depending on the goals of the modeller. At the beginning of the XXIst century an effort to classify such systems, at least for even bottoms, was undertaken and developed according to both different physical regimes and mathematical properties, with special emphasis, in this last sense, on the existence of symmetry groups and their connection to conserved quantities. Of particular interest are those systems admitting a symplectic structure, with the subsequent preservation of the total energy represented by the Hamiltonian. In the present paper a family of Boussinesq-type systems with multi-symplectic structure is introduced. Some properties of the new systems are analyzed: their relation with already known Boussinesq models, the identification of those systems with additional Hamiltonian structure as well as other mathematical features like well-posedness and existence of different types of solitary-wave solutions. The consistency of multi-symplectic systems with the full Euler equations is also discussed.
301 - Frederic Dias 2009
In the study of ocean wave impact on structures, one often uses Froude scaling since the dominant force is gravity. However the presence of trapped or entrained air in the water can significantly modify wave impacts. When air is entrained in water in the form of small bubbles, the acoustic properties in the water change dramatically and for example the speed of sound in the mixture is much smaller than in pure water, and even smaller than in pure air. While some work has been done to study small-amplitude disturbances in such mixtures, little work has been done on large disturbances in air-water mixtures. We propose a basic two-fluid model in which both fluids share the same velocities. It is shown that this model can successfully mimic water wave impacts on coastal structures. Even though this is a model without interface, waves can occur. Their dispersion relation is discussed and the formal limit of pure phases (interfacial waves) is considered. The governing equations are discretized by a second-order finite volume method. Numerical results are presented. It is shown that this basic model can be used to study violent aerated flows, especially by providing fast qualitative estimates.
We describe recent work on the Bergman kernel of the (non-smooth) worm domain in several complex variables. An asymptotic expansion is obtained for the Bergman kernel. Mapping properties of the Bergman projection are studied. Irregularity properties of the kernal at the boundary are established. This is an expository paper, and considerable background is provided. Discussion of the smooth worm is also included.
In the present manuscript, we consider the problem of dispersive wave simulation on a rotating globally spherical geometry. In this Part IV, we focus on numerical aspects while the model derivation was described in Part III. The algorithm we propose is based on the splitting approach. Namely, equations are decomposed on a uniformly elliptic equation for the dispersive pressure component and a hyperbolic part of shallow water equations (on a sphere) with source terms. This algorithm is implemented as a two-step predictor-corrector scheme. On every step, we solve separately elliptic and hyperbolic problems. Then, the performance of this algorithm is illustrated on model idealised situations with an even bottom, where we estimate the influence of sphericity and rotation effects on dispersive wave propagation. The dispersive effects are quantified depending on the propagation distance over the sphere and on the linear extent of generation region. Finally, the numerical method is applied to a couple of real-world events. Namely, we undertake simulations of the Bulgarian 2007 and Chilean 2010 tsunamis. Whenever the data is available, our computational results are confronted with real measurements.
In this paper we consider the numerical approximation of systems of Boussinesq-type to model surface wave propagation. Some theoretical properties of these systems (multi-symplectic and Hamiltonian formulations, well-posedness and existence of solita ry-wave solutions) were previously analyzed by the authors in Part I. As a second part of the study, considered here is the construction of geometric schemes for the numerical integration. By using the method of lines, the geometric properties, based on the multi-symplectic and Hamiltonian structures, of different strategies for the spatial and time discretizations are discussed and illustrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا