ترغب بنشر مسار تعليمي؟ اضغط هنا

The EDIBLES survey IV. Cosmic ray ionization rates in diffuse clouds from near-ultraviolet observations of interstellar OH$^+$

126   0   0.0 ( 0 )
 نشر من قبل Xavier Bacalla
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report cosmic ray ionization rates towards ten reddened stars studied within the framework of the EDIBLES (ESO Diffuse Interstellar Bands Large Exploration Survey) program, using the VLT-UVES. For each sightline, between 2 and 10 individual rotational lines of OH$^+$ have been detected in its (0,0) and (1,0) $A^3Pi-X^3Sigma^-$ electronic band system. This allows constraining of OH$^+$ column densities towards different objects. Results are also presented for 28 additional sightlines for which only one or rather weak signals are found. An analysis of these data makes it possible to derive the primary cosmic ray ionization rate $zeta_p$ in the targeted diffuse interstellar clouds. For the ten selected targets, we obtain a range of values for $zeta_p$ equal to $(3.9-16.4) times 10^{-16}~mathrm{s}^{-1}$. These values are higher than the numbers derived in previous detections of interstellar OH$^+$ in the far-infrared / sub-millimeter-wave regions and in other near-ultraviolet studies. This difference is a result of using new OH$^+$ oscillator strength values and a more complete picture of all relevant OH$^+$ formation and destruction routes (including the effect of proton recombinations on PAHs), and the relatively high $N$(OH$^+$) seen toward those ten targets.



قيم البحث

اقرأ أيضاً

We model the production of OH+, H2O+, and H3O+ in interstellar clouds, using a steady state photodissociation region code that treats the freeze-out of gas species, grain surface chemistry, and desorption of ices from grains. The code includes PAHs, which have important effects on the chemistry. All three ions generally have two peaks in abundance as a function of depth into the cloud, one at A_V<~1 and one at A_V~3-8, the exact values depending on the ratio of incident ultraviolet flux to gas density. For relatively low values of the incident far ultraviolet flux on the cloud ({chi}<~ 1000; {chi}= 1= local interstellar value), the columns of OH+ and H2O+ scale roughly as the cosmic ray primary ionization rate {zeta}(crp) divided by the hydrogen nucleus density n. The H3O+ column is dominated by the second peak, and we show that if PAHs are present, N(H3O+) ~ 4x10^{13} cm^{-2} independent of {zeta}(crp) or n. If there are no PAHs or very small grains at the second peak, N(H3O+) can attain such columns only if low ionization potential metals are heavily depleted. We also model diffuse and translucent clouds in the interstellar medium, and show how observations of N(OH+)/N(H) and N(OH+)/N(H2O+) can be used to estimate {zeta}(crp)/n, {chi}/n and A_V in them. We compare our models to Herschel observations of these two ions, and estimate {zeta}(crp) ~ 4-6 x 10^-16 (n/100 cm^-3) s^-1 and chi/n = 0.03 cm^3 for diffuse foreground clouds towards W49N.
We present a systematic study of deuterated molecular hydrogen (HD) at high redshift, detected in absorption in the spectra of quasars. We present four new identifications of HD lines associated with known $rm H_2$-bearing Damped Lyman-$alpha$ system s. In addition, we measure upper limits on the $rm HD$ column density in twelve recently identified $rm H_2$-bearing DLAs. We find that the new $rm HD$ detections have similar $N({rm HD})/N(rm H_2)$ ratios as previously found, further strengthening a marked difference with measurements through the Galaxy. This is likely due to differences in physical conditions and metallicity between the local and the high-redshift interstellar media. Using the measured $N({rm HD})/N({rm H_2})$ ratios together with priors on the UV flux ($chi$) and number densities ($n$), obtained from analysis of $rm H_2$ and associated CI lines, we are able to constrain the cosmic-ray ionization rate (CRIR, $zeta$) for the new $rm HD$ detections and for eight known HD-bearing systems where priors on $n$ and $chi$ are available. We find significant dispersion in $zeta$, from a few $times 10^{-18}$ s$^{-1}$ to a few $times 10^{-15}$ s$^{-1}$. We also find that $zeta$ strongly correlates with $chi$ -- showing almost quadratic dependence, slightly correlates with $Z$, and does not correlate with $n$, which probably reflects a physical connection between cosmic rays and star-forming regions.
204 - A.J. Porras 2013
Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio ), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH+ detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for high enough density and molecular fraction before detectable amounts are seen. Thus, while OH+ leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds.
145 - Nick Cox , Jan Cami , Amin Farhang 2017
The carriers of the diffuse interstellar bands (DIBs) are largely unidentified molecules ubiquitously present in the interstellar medium (ISM). After decades of study, two strong and possibly three weak near-infrared DIBs have recently been attribute d to the C60+ fullerene based on observational and laboratory measurements. There is great promise for the identification of the over 400 other known DIBs, as this result could provide chemical hints towards other possible carriers. In an effort to systematically study the properties of the DIB carriers, we have initiated a new large-scale observational survey: the ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES). The main objective is to build on and extend existing DIB surveys to make a major step forward in characterising the physical and chemical conditions for a statistically significant sample of interstellar lines-of-sight, with the goal to reverse-engineer key molecular properties of the DIB carriers. EDIBLES is a filler Large Programme using the Ultraviolet and Visual Echelle Spectrograph at the Very Large Telescope at Paranal, Chile. It is designed to provide an observationally unbiased view of the presence and behaviour of the DIBs towards early-spectral-type stars whose lines-of-sight probe the diffuse-to-translucent ISM. Such a complete dataset will provide a deep census of the atomic and molecular content, physical conditions, chemical abundances and elemental depletion levels for each sightline. Achieving these goals requires a homogeneous set of high-quality data in terms of resolution (R ~ 70000 -- 100000), sensitivity (S/N up to 1000 per resolution element), and spectral coverage (305--1042 nm), as well as a large sample size (100+ sightlines). In this first paper the goals, objectives and methodology of the EDIBLES programme are described and an initial assessment of the data is provided.
Based on the analysis of available published data and archival data along 24 sightlines (5 of which are new) we derive more accurate estimates of the column densities of OH and CH towards diffuse/translucent clouds and revisit the typically observed correlation between the abundances of these species. The increase in the sample size was possible because of the equivalence of the column densities of CH derived from a combination of the transitions at 3137 & 3143 Angstrom, and a combination of transitions at 3886 & 3890 Angstrom, which we have demonstrated here. We find that with the exception of four diffuse clouds, the entire source sample shows a clear correlation between the column densities of OH and CH similar to previous observations. The analysis presented also verifies the theoretically predicted oscillator strengths of the OH A--X (3078 & 3082 Angstrom), CH B--X (3886 & 3890 Angstrom) and C--X (3137 & 3143 Angstrom) transitions. We estimate N(H) and N(H2) from the observed E(B-V) and N(CH) respectively. The N(OH)/N(CH) ratio is not correlated with the molecular fraction of hydrogen in the diffuse/translucent clouds. We show that with the exception of HD 34078 for all the clouds the observed column density ratios of CH and OH can be reproduced by simple chemical models which include gas-grain interaction and gas-phase chemistry. The enhanced N(OH)/N(CH) ratio seen towards the 3 new sightlines can be reproduced primarily by considering different cosmic ray ionization rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا