ﻻ يوجد ملخص باللغة العربية
Low-loss electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) probes the valence electron density and relevant optoelectronic properties such as band gap energies and other band structure transitions. The measured spectra can be formulated in a dielectric theory framework, comparable to optical spectroscopies and ab-initio simulations. Moreover, Kramers-Kronig analysis (KKA), an inverse algorithm based on the homonym relations, can be employed for the retrieval of the complex dielectric function (CDF). However, spurious contributions traditionally not considered in this framework typically impact low-loss EELS modifying the spectral shapes and precluding the correct measurement and retrieval of the dielectric information. A relativistic KKA algorithm is able to account for the bulk and surface radiative-loss contributions to low-loss EELS, revealing the correct dielectric properties. Using a synthetic low-loss EELS model, we propose some modifications on the naive implementation of this algorithm that broadens its range of application. The robustness of the algorithm is improved by regularization, appliying previous knowledge about the shape and smoothness of the correction term. Additionally, our efficient numerical integration methodology allows processing hyperspectral datasets in a reasonable amount of time. Harnessing these abilities, we show how simultaneous relativistic KKA processing of several spectra can share information to produce an improved result.
A Kramers-Kronig receiver with a continuous wave tone added digitally at the transmitter is combined with a digital resolution enhancer to limit the increase in transmitter quantization noise. Performance increase is demonstrated, as well as the abil
The macroscopic electric permittivity of a given medium may depend on frequency, but this frequency dependence cannot be arbitrary, its real and imaginary parts are related by the well-known Kramers-Kronig relations. Here, we show that an analogous p
The ultimate precision in any measurement is dictated by the physical process implementing the observation. The methods of quantum metrology have now succeeded in establishing bounds on the achievable precision for phase measurements over noisy chann
Spin accumulation voltages in a non-degenerate Si spin valve are discussed quantitatively as a function of electric bias current using systematic experiments and model calculations. As an open question in semiconductor spintronics, the origin of the
We report a correlative microscopy study of a sample containing three stacks of InGaN/GaN quantum dots (QDs) grown at different substrate temperature, each stack consisting of 3 layers of QDs. Decreasing the substrate temperature along the growth axi